Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroimage Clin ; 36: 103155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007439

RESUMO

BACKGROUND: Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. METHODS: Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. RESULTS: Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). CONCLUSION: Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment.


Assuntos
Glioma , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Bicarbonatos , Glioma/diagnóstico por imagem , Glioma/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido Láctico/metabolismo
2.
Nat Commun ; 12(1): 92, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397920

RESUMO

Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.


Assuntos
Neoplasias Encefálicas/genética , Homeostase do Telômero , Telômero/metabolismo , Alanina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Engenharia Genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Ácido Láctico/metabolismo , Masculino , Metaboloma , Modelos Biológicos , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Nus , Telomerase/genética , Telomerase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 10(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189677

RESUMO

Optimal treatment selection for localized renal tumors is challenging due to their variable biological behavior and limited ability to pre-operatively assess their aggressiveness. We investigated hyperpolarized (HP) 13C pyruvate MRI to noninvasively assess tumor lactate production and compartmentalization, which are strongly associated with renal tumor aggressiveness. Orthotopic tumors were created in mice using human renal cell carcinoma (RCC) lines (A498, 786-O, UOK262) with varying expression of lactate dehydrogenase A (LDHA) which catalyzes the pyruvate-to-lactate conversion, and varying expression of monocarboxylate transporter 4 (MCT4) which mediates lactate export out of the cells. Dynamic HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C pyruvate-to-lactate conversion than the UOK262 and 786-O tumors, corresponding to higher A498 tumor LDHA expression. Additionally, diffusion-weighted HP 13C pyruvate MRI showed that the A498 tumors had significantly higher 13C lactate apparent diffusion coefficients compared to 786-O tumors, with corresponding higher MCT4 expression, which likely reflects more rapid lactate export in the A498 tumors. Our data demonstrate the feasibility of HP 13C pyruvate MRI to inform on tumor lactate production and compartmentalization, and provide the scientific premise for future clinical investigation into the utility of this technique to noninvasively interrogate renal tumor aggressiveness and to guide treatment selection.

4.
Magn Reson Imaging ; 38: 152-162, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28077268

RESUMO

The goal of this project was to develop and apply techniques for T2 mapping and 3D high resolution (1.5mm isotropic; 0.003cm3) 13C imaging of hyperpolarized (HP) probes [1-13C]lactate, [1-13C]pyruvate, [2-13C]pyruvate, and [13C,15N2]urea in vivo. A specialized 2D bSSFP sequence was implemented on a clinical 3T scanner and used to obtain the first high resolution T2 maps of these different hyperpolarized compounds in both rats and tumor-bearing mice. These maps were first used to optimize timings for highest SNR for single time-point 3D bSSFP acquisitions with a 1.5mm isotropic spatial resolution of normal rats. This 3D acquisition approach was extended to serial dynamic imaging with 2-fold compressed sensing acceleration without changing spatial resolution. The T2 mapping experiments yielded measurements of T2 values of >1s for all compounds within rat kidneys/vasculature and TRAMP tumors, except for [2-13C]pyruvate which was ~730ms and ~320ms, respectively. The high resolution 3D imaging enabled visualization the biodistribution of [1-13C]lactate, [1-13C]pyruvate, and [2-13C]pyruvate within different kidney compartments as well as in the vasculature. While the mouse anatomy is smaller, the resolution was also sufficient to image the distribution of all compounds within kidney, vasculature, and tumor. The development of the specialized 3D sequence with compressed sensing provided improved structural and functional assessments at a high (0.003cm3) spatial and 2s temporal resolution in vivo utilizing HP 13C substrates by exploiting their long T2 values. This 1.5mm isotropic resolution is comparable to 1H imaging and application of this approach could be extended to future studies of uptake, metabolism, and perfusion in cancer and other disease models and may ultimately be of value for clinical imaging.


Assuntos
Isótopos de Carbono/química , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagem Molecular , Animais , Feminino , Processamento de Imagem Assistida por Computador , Rim/diagnóstico por imagem , Masculino , Camundongos , Camundongos Transgênicos , Método de Monte Carlo , Transplante de Neoplasias , Ácido Pirúvico/metabolismo , Ratos , Distribuição Tecidual , Ureia/química
5.
Magn Reson Med ; 77(6): 2356-2363, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298073

RESUMO

PURPOSE: Hyperpolarized 13 C MRI is a powerful tool for studying metabolism, but can lack tissue specificity. Gadoxetate is a gadolinium-based MRI contrast agent that is selectively taken into hepatocytes. The goal of this project was to investigate whether gadoxetate can be used to selectively suppress the hyperpolarized signal arising from hepatocytes, which could in future studies be applied to generate specificity for signal from abnormal cell types. METHODS: Baseline gadoxetate uptake kinetics were measured using T1 -weighted contrast enhanced imaging. Relaxivity of gadoxetate was measured for [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine. Four healthy rats were imaged with hyperpolarized [1-13 C]pyruvate using a three-dimensional (3D) MRSI sequence prior to and 15 min following administration of gadoxetate. The lactate:pyruvate ratio and alanine:pyruvate ratios were measured in liver and kidney. RESULTS: Overall, the hyperpolarized signal decreased approximately 60% as a result of pre-injection of gadoxetate. In liver, the lactate:pyruvate and alanine:pyruvate ratios decreased 42% and 78%, respectively (P < 0.05) following gadoxetate administration. In kidneys, these ratios did not change significantly. Relaxivity of gadoxetate for [1-13 C]alanine was 12.6 times higher than relaxivity of gadoxetate for [1-13 C]pyruvate, explaining the greater selective relaxation effect on alanine. CONCLUSIONS: The liver-specific gadolinium contrast-agent gadoxetate can selectively suppress normal hepatocyte contributions to hyperpolarized 13 C MRI signals. Magn Reson Med 77:2356-2363, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/farmacocinética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Gadolínio DTPA/farmacocinética , Hepatócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Isótopos de Carbono/administração & dosagem , Combinação de Medicamentos , Gadolínio DTPA/administração & dosagem , Hepatócitos/citologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Nat Commun ; 4: 2429, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019001

RESUMO

Gain-of-function mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade gliomas and secondary glioblastoma. They lead to intracellular accumulation of the oncometabolite 2-hydroxyglutarate, represent an early pathogenic event and are considered a therapeutic target. Here we show, in this proof-of-concept study, that [1-(13)C] α-ketoglutarate can serve as a metabolic imaging agent for non-invasive, real-time, in vivo monitoring of mutant IDH1 activity, and can inform on IDH1 status. Using (13)C magnetic resonance spectroscopy in combination with dissolution dynamic nuclear polarization, the metabolic fate of hyperpolarized [1-(13)C] α-ketoglutarate is studied in isogenic glioblastoma cells that differ only in their IDH1 status. In lysates and tumours that express wild-type IDH1, only hyperpolarized [1-(13)C] α-ketoglutarate can be detected. In contrast, in cells that express mutant IDH1, hyperpolarized [1-(13)C] 2-hydroxyglutarate is also observed, both in cell lysates and in vivo in orthotopic tumours.


Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Glioma/enzimologia , Glioma/genética , Isocitrato Desidrogenase/genética , Animais , Isótopos de Carbono , Extratos Celulares , Linhagem Celular Tumoral , Análise Mutacional de DNA , Glutaratos/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/metabolismo , Ratos , Ratos Nus
7.
J Magn Reson ; 205(1): 141-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20478721

RESUMO

Methods for the simultaneous polarization of multiple 13C-enriched metabolites were developed to probe several enzymatic pathways and other physiologic properties in vivo, using a single intravenous bolus. A new method for polarization of 13C sodium bicarbonate suitable for use in patients was developed, and the co-polarization of 13C sodium bicarbonate and [1-(13)C] pyruvate in the same sample was achieved, resulting in high solution-state polarizations (15.7% and 17.6%, respectively) and long spin-lattice relaxation times (T1) (46.7 s and 47.7 s respectively at 3 T). Consistent with chemical shift anisotropy dominating the T1 relaxation of carbonyls, T1 values for 13C bicarbonate and [1-(13)C] pyruvate were even longer at 3 T (49.7s and 67.3s, respectively). Co-polarized 13C bicarbonate and [1-(13)C] pyruvate were injected into normal mice and a murine prostate tumor model at 3T. Rapid equilibration of injected hyperpolarized 13C sodium bicarbonate with 13C CO2 allowed calculation of pH on a voxel by voxel basis, and simultaneous assessment of pyruvate metabolism with cellular uptake and conversion of [1-(13)C] pyruvate to its metabolic products. Initial studies in a Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model demonstrated higher levels of hyperpolarized lactate and lower pH within tumor, relative to surrounding benign tissues and to the abdominal viscera of normal controls. There was no significant difference observed in the tumor lactate/pyruvate ratio obtained after the injection of co-polarized 13C bicarbonate and [1-(13)C] pyruvate or polarized [1-(13)C] pyruvate alone. The technique was extended to polarize four 13C labelled substrates potentially providing information on pH, metabolism, necrosis and perfusion, namely [1-(13)C]pyruvic acid, 13C sodium bicarbonate, [1,4-(13)C]fumaric acid, and 13C urea with high levels of solution polarization (17.5%, 10.3%, 15.6% and 11.6%, respectively) and spin-lattice relaxation values similar to those recorded for the individual metabolites. These studies demonstrated the feasibility of simultaneously measuring in vivo pH and tumor metabolism using nontoxic, endogenous species, and the potential to extend the multi-polarization approach to include up to four hyperpolarized probes providing multiple metabolic and physiologic measures in a single MR acquisition.


Assuntos
Enzimas/química , Enzimas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Animais , Biomarcadores Tumorais/análise , Fumaratos/farmacocinética , Gadolínio , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Injeções Intravenosas , Marcação por Isótopo , Masculino , Camundongos , Necrose , Transplante de Neoplasias , Neoplasias da Próstata/química , Neoplasias da Próstata/metabolismo , Ácido Pirúvico/administração & dosagem , Ácido Pirúvico/química , Ácido Pirúvico/farmacocinética , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/química , Bicarbonato de Sódio/farmacocinética , Solubilidade , Ureia/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA