Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Total Environ ; 651(Pt 1): 171-178, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227287

RESUMO

To mitigate mercury (Hg) pollution and reduce Hg downstream transportation, a weir was designed by a river system that had been inflicted by leachate from the slagheap of the Yanwuping Hg mine in Wanshan Hg mining area. A whole year monitoring of Hg species was conducted, and the efficiency of Hg reduction by the weir application was evaluated. The Hg concentrations in the river water were significantly higher in the wet season than in the dry season. Waterflow was confirmed to be the main driving factor for Hg mobilization and transportation, and an episode study revealed that most Hg was released in times of storms. Increased monitoring and preventive maintenance measures need to be taken on barriers in advance of storms. A large proportion of the total Hg (THg) and methylmercury (MeHg) is associated to particles. During the study period, approximately 412 g THg and 4.04 g total MeHg (TMeHg) were released from the YMM slagheap, of which 167 g THg and 1.15 g TMeHg were retained by the weir. Annually, 40.4% THg and 38.4% TMeHg was retained by the weir. Weir construction is considered as a potential cost-effective measure to mitigate Hg in river water and should be promoted and extended in the future after optimization.

2.
Sci Total Environ ; 544: 553-63, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26674684

RESUMO

Models for pollution exposure assessment typically adopt an overly simplistic representation of geography, climate and biogeochemical processes. This strategy is unsatisfactory when high temporal resolution simulations for sub-regional spatial domains are performed, in which parameters defining scenarios can vary interdependently in space and time. This is, for example, the case when assessing the influence of biogeochemical processing on contaminant fate. Here we present INCA-Contaminants, the Integrated Catchments model for Contaminants; a new model that simultaneously and realistically solves mass balances of water, carbon, sediments and contaminants in the soil-stream-sediment system of catchments and their river networks as a function of climate, land use/management and contaminant properties. When forced with realistic climate and contaminant input data, the model was able to predict polychlorinated biphenyls (PCBs) concentrations in multiple segments of a river network in a complex landscape. We analyzed model output sensitivity to a number of hydro-biogeochemical parameters. The rate of soil organic matter mineralization was the most sensitive parameter controlling PCBs levels in river water, supporting the hypothesis that organic matter turnover rates will influence re-mobilization of previously deposited PCBs which had accumulated in soil organic matrix. The model was also used to project the long term fate of PCB 101 under two climate scenarios. Catchment diffuse run-off and riverine transport were the major pathways of contaminant re-mobilization. Simulations show that during the next decade the investigated boreal catchment will shift from being a net atmospheric PCB sink to a net source for air and water, with future climate perturbation having little influence on this trend. Our results highlight the importance of using credible hydro-biogeochemical simulations when modeling the fate of hydrophobic contaminants.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Poluentes Químicos da Água/análise , Multimídia
3.
Environ Toxicol Chem ; 34(6): 1213-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663582

RESUMO

Methylmercury (MeHg) concentrations in freshwater fish from southeastern Norway continue to increase, highlighting the need for a comprehensive understanding of MeHg sources, cycling, and degradation in the aquatic environment. The authors assessed the importance of photodemethylation in the MeHg budget of 4 Norwegian lakes. Photodemethylation rates were determined using incubation experiments with MeHg-spiked natural lake water. The authors determined full-spectrum exposure rates at all study sites and waveband-specific rates (photosynthetically active radiation, ultraviolet-A radiation, and ultraviolet-B radiation) at 1 clear-water (Sognsvann) and 1 humic (Langtjern) site. No significant differences in photodemethylation rates between the sites were found, and the authors' observed rates agreed with available literature for lake and wetland waters. The authors paired experimentally derived photodemethylation rates with lake-specific incident irradiation, light attenuation, and MeHg concentrations to estimate MeHg loss through photodemethylation for the study sites. For Langtjern, losses through photodemethylation equalled 27% of total annual inputs, highlighting the importance of photodemethylation in the MeHg budget. Furthermore, the authors assessed how changes in terrestrial dissolved organic carbon (DOC) exported to freshwaters and climate-driven reductions in ice cover duration may affect MeHg losses through photodemethylation. Results suggest that future increases in DOC may lead to higher aqueous MeHg concentrations in boreal lakes due to increased DOC-associated MeHg inputs paired with significant decreases in the loss of MeHg through photodemethylation due to increased light attenuation.


Assuntos
Lagos/análise , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/efeitos da radiação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Biodegradação Ambiental , Cinética , Luz , Metilação , Noruega , Fotoquímica , Raios Ultravioleta
4.
Environ Res ; 141: 24-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25483984

RESUMO

Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury.


Assuntos
Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Poluentes Ambientais/análise , Cabelo/química , Laboratórios/normas , Mercúrio/análise , Criança , Exposição Ambiental/análise , Poluentes Ambientais/farmacocinética , Europa (Continente) , Feminino , Humanos , Cooperação Internacional , Mercúrio/farmacocinética , Mães , Desenvolvimento de Programas , Controle de Qualidade , Inquéritos e Questionários
5.
Sci Total Environ ; 404(2-3): 290-6, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18448147

RESUMO

We present input and output fluxes of total mercury (Hg(tot)) and methyl mercury (MeHg) based on throughfall, litterfall and stream water samples from 2004/2005 from a small forested catchment (Langtjern) in Norway. Hg(tot) input via throughfall and litterfall was estimated to 6.7 and 2.7 microg m(-2) yr(-1), respectively, which is considerably lower than previously reported from other boreal catchments in Scandinavia. A likely cause for the low input flux is the sparseness and low productivity of the forest in the Langtjern catchment, with less atmospheric scavenging and lower litterfall fluxes than previously studied sites. In addition there has been a general decrease in mercury (Hg) in the atmosphere on the northern hemisphere in the last decade. The estimated output flux of Hg(tot) with surface water was 2.5 microg m(-2) yr(-1), which is comparable to what has been reported elsewhere. The ratio of Hg(tot) output flux to input flux was 26%, which is considerably higher than reported from other sites. This illustrates that catchment properties have greater importance for surface water export of Hg than the current atmospheric input. The estimated total soil pool of Hg(tot) in the catchment was 17.4 mg m(-2). This corresponds to roughly 8000 years of the current surface water output flux and 2000 years of the current input flux.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Árvores , Poluentes Químicos da Água/análise , Ecossistema , Poluentes do Solo/química , Fatores de Tempo , Movimentos da Água
6.
Environ Sci Technol ; 41(6): 1815-20, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17410769

RESUMO

Base cations (BC) play an important role to prevent soil acidification. In certain acid sensitive areas, such as China, BC deposition is high and a considerable fraction is of anthropogenic origin. BC deposition might decrease in the future with the implementation of air pollution control measures. The effect of changes in BC deposition, however, has seldom been considered in critical load calculations based on the steady-state mass balance (SSMB) method. In order to better quantify the importance of the BC deposition for acid deposition mitigation policy, an extension of the SSMB method for critical load calculation for soil acidification is presented. The BC deposition is taken into account as a variable along with sulfur (S) and nitrogen (N) deposition, creating an S-N-BC critical load function. As a case study, critical loads of S and N for the Tie Shan Ping catchment in Chongqing in southwest China under variable BC deposition were calculated. Results indicate that abatement of BC deposition has significant impact on the critical loads of S and N. A 75% reduction in BC of assumed anthropogenic origin decreases the critical loads of acids by 58%. The current deposition does not exceed the critical loads, but if BC deposition from anthropogenic sources was controlled, then the exceedance would be considerable. Uncertainty analysis show that the size of the BC deposition of natural origin is the single parameter contributing the most to the steady-state S and N critical load. The extended critical load function can be used by policy makers to set more reasonable acidity control strategies in the future. The method also highlights for policymakers the "competition" between emission control of particulate matter driven by human health targets and potential increase of net acid load from such measures.


Assuntos
Ácidos/análise , Cátions/química , Poluição Ambiental/prevenção & controle , Nitrogênio/química , Poluentes do Solo/análise , Enxofre/química , China , Modelos Teóricos , Política Pública
7.
Environ Monit Assess ; 109(1-3): 1-36, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16240186

RESUMO

To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO(4)), inorganic nitrogen (NO(3)-N; NH(4)-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO(4) deposition during the 1990s ranged between 7.3 and 28.4 kg ha(-1) per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha(-1) per year, of which 41-67% was nitrate (NO(3)-N). Over the period of record, SO(4) concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO(4) in runoff decreased at 14/17 catchments. In contrast, NO(3)-N concentrations in deposition decreased in only 1/14 regions, while NH(4)-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH(4)-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31-100%; median 94%) was retained in the catchments, although there was a tendency for greater NO(3)-N leaching at sites receiving higher (<7 kg ha(-1) per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO(4) and H(+) deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern.


Assuntos
Cálcio/análise , Magnésio/análise , Nitrogênio/análise , Potássio/análise , Sulfatos/análise , Chuva Ácida , Canadá , Monitoramento Ambiental , Poluentes Ambientais/análise , Europa (Continente) , Rios/química , Árvores , Estados Unidos , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA