Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 47(7): 1736-1745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31897586

RESUMO

PURPOSE: 18F-sodium fluoride (18F-NaF) has shown promise in assessing disease activity in coronary arteries, but currently used measures of activity - such as maximum target to background ratio (TBRmax) - are defined by single pixel count values. We aimed to develop a novel coronary-specific measure of 18F-NaF PET reflecting activity throughout the entire coronary vasculature (coronary microcalcification activity [CMA]). METHODS: Patients with recent myocardial infarction and multi-vessel coronary artery disease underwent 18F-NaF PET and coronary CT angiography. We assessed the association between coronary 18F-NaF uptake (both TBRmax and CMA) and coronary artery calcium scores (CACS) as well as low attenuation plaque (LAP, attenuation < 30 Hounsfield units) volume. RESULTS: In 50 patients (64% males, 63 ± 7 years), CMA and TBRmax were higher in vessels with LAP compared to those without LAP (1.09 [0.02, 2.34] versus 0.0 [0.0, 0.0], p < 0.001 and 1.23 [1.16, 1.37] versus 1.04 [0.93, 1.11], p < 0.001). Compared to a TBRmax threshold of 1.25, CMA > 0 had a higher diagnostic accuracy for detection of LAP: sensitivity of 93.1 (83.3-98.1)% versus 58.6 (44.9-71.4)% and a specificity of 95.7 (88.0-99.1)% versus 80.0 (68.7-88.6)% (both p < 0.001). 18F-NaF uptake assessed by CMA correlated more closely with LAP (r = 0.86, p < 0.001) than the CT calcium score (r = 0.39, p < 0.001), with these associations outperforming those observed for TBRmax values (LAP r = 0.63, p < 0.001; CT calcium score r = 0.30, p < 0.001). CONCLUSIONS: Automated assessment of disease activity across the entire coronary vasculature is feasible using 18F-NaF CMA, providing a single measurement that has closer agreement with CT markers of plaque vulnerability than more traditional measures of plaque activity.


Assuntos
Calcinose , Vasos Coronários , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluoreto de Sódio , Idoso , Calcinose/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
J Nucl Med ; 60(4): 530-535, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30213848

RESUMO

Coronary 18F-sodium fluoride (18F-NaF) PET identifies ruptured plaques in patients with recent myocardial infarction and localizes to atherosclerotic lesions with active calcification. Most studies to date have performed the PET acquisition 1 h after injection. Although qualitative and semiquantitative analysis is feasible with 1-h images, residual blood-pool activity often makes it difficult to discriminate plaques with 18F-NaF uptake from noise. We aimed to assess whether delayed PET performed 3 h after injection improves image quality and uptake measurements. Methods: Twenty patients (67 ± 7 y old, 55% male) with stable coronary artery disease underwent coronary CT angiography (CTA) and PET/CT both 1 h and 3 h after the injection of 266.2 ± 13.3 MBq of 18F-NaF. We compared the visual pattern of coronary uptake, maximal background (blood pool) activity, noise, SUVmax, corrected SUVmax (cSUVmax), and target-to-background (TBR) ratio in lesions defined by CTA on 1-h versus 3-h 18F-NaF PET. Results: On 1-h PET, 26 CTA lesions with 18F-NaF PET uptake were identified in 12 (60%) patients. On 3-h PET, we detected 18F-NaF PET uptake in 7 lesions that were not identified on 1-h PET. The median cSUVmax and TBRs of these lesions were 0.48 (interquartile range [IQR], 0.44-0.51) and 1.45 (IQR, 1.39-1.52), respectively, compared with -0.01 (IQR, -0.03-0.001) and 0.95 (IQR, 0.90-0.98), respectively, on 1-h PET (both P < 0.001). Across the entire cohort, 3-h PET SUVmax was similar to 1-h PET measurements (1.63 [IQR, 1.37-1.98] vs. 1.55 [IQR, 1.43-1.89], P = 0.30), and the background activity was lower (0.71 [IQR, 0.65-0.81] vs. 1.24 [IQR, 1.05-1.31], P < 0.001). On 3-h PET, TBR, cSUVmax, and noise were significantly higher (respectively: 2.30 [IQR, 1.70-2.68] vs. 1.28 [IQR, 0.98-1.56], P < 0.001; 0.38 [IQR, 0.27-0.70] vs. 0.90 [IQR, 0.64-1.17], P < 0.001; and 0.10 [IQR, 0.09-0.12] vs. 0.07 [IQR, 0.06-0.09], P = 0.02). Median cSUVmax and TBR increased by 92% (range, 33%-225%) and 80% (range, 20%-177%), respectively. Conclusion: Blood-pool activity decreases on delayed imaging, facilitating the assessment of 18F-NaF uptake in coronary plaques. Median TBR increases by 80%, leading to the detection of more plaques with significant uptake than are detected using the standard 1-h protocol. A greater than 1-h delay may improve the detection of 18F-NaF uptake in coronary artery plaques.


Assuntos
Vasos Coronários/diagnóstico por imagem , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluoreto de Sódio , Idoso , Transporte Biológico , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Fluoreto de Sódio/metabolismo , Fatores de Tempo
3.
Circ Cardiovasc Imaging ; 11(12): e008325, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30558496

RESUMO

BACKGROUND: We assessed the feasibility of utilizing previously acquired computed tomography angiography (CTA) with subsequent positron-emission tomography (PET)-only scan for the quantitative evaluation of 18F-NaF PET coronary uptake. METHODS AND RESULTS: Forty-five patients (age 67.1±6.9 years; 76% males) underwent CTA (CTA1) and combined 18F-NaF PET/CTA (CTA2) imaging within 14 [10, 21] days. We fused CTA1 from visit 1 with 18F-NaF PET (PET) from visit 2 and compared visual pattern of activity, maximal standard uptake (SUVmax) values, and target to background ratio (TBR) measurements on (PET/CTA1) fused versus hybrid (PET/CTA2). On PET/CTA2, 226 coronary plaques were identified. Fifty-eight coronary segments from 28 (62%) patients had high 18F-NaF uptake (TBR >1.25), whereas 168 segments had lesions with 18F-NaF TBR ≤1.25. Uptake in all lesions was categorized identically on coregistered PET/CTA1. There was no significant difference in 18F-NaF uptake values between PET/CTA1 and PET/CTA2 (SUVmax, 1.16±0.40 versus 1.15±0.39; P=0.53; TBR, 1.10±0.45 versus 1.09±0.46; P=0.55). The intraclass correlation coefficient for SUVmax and TBR was 0.987 (95% CI, 0.983-0.991) and 0.986 (95% CI, 0.981-0.992). There was no fixed or proportional bias between PET/CTA1 and PET/CTA2 for SUVmax and TBR. Cardiac motion correction of PET scans improved reproducibility with tighter 95% limits of agreement (±0.14 for SUVmax and ±0.15 for TBR versus ±0.20 and ±0.20 on diastolic imaging; P<0.001). CONCLUSIONS: Coronary CTA/PET protocol with CTA first followed by PET-only allows for reliable and reproducible quantification of 18F-NaF coronary uptake. This approach may facilitate selection of high-risk patients for PET-only imaging based on results from prior CTA, providing a practical workflow for clinical application.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Doença da Artéria Coronariana/diagnóstico , Vasos Coronários/diagnóstico por imagem , Radioisótopos de Flúor/farmacocinética , Placa Aterosclerótica/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Fluoreto de Sódio/farmacocinética , Idoso , Transporte Biológico , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Placa Aterosclerótica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA