RESUMO
Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.
Assuntos
Antibacterianos , Cobre , Géis , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Géis/química , Reagentes de Ligações Cruzadas/química , Dipeptídeos/química , Dipeptídeos/farmacologia , Micelas , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacosRESUMO
Peptides are receiving increasing interest as clinical therapeutics. These highly tunable molecules can be tailored to achieve desirable biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. Despite challenges regarding up-scaling and licensing of peptide products, their vast clinical potential is reflected in the 60 plus peptide-based therapeutics already on the market, and the further 500 derivatives currently in developmental stages. Peptides are proving effective for a multitude of disease states including: type 2 diabetes (controlled using the licensed glucagon-like peptide-1 receptor liraglutide); irritable bowel syndrome managed with linaclotide (currently at approval stages); acromegaly (treated with octapeptide somatostatin analogues lanreotide and octreotide); selective or broad spectrum microbicidal agents such as the Gram-positive selective PTP-7 and antifungal heliomicin; anticancer agents including goserelin used as either adjuvant or monotherapy for prostate and breast cancer, and the first marketed peptide derived vaccine against prostate cancer, sipuleucel-T. Research is also focusing on improving the biostability of peptides. This is achieved through a number of mechanisms ranging from replacement of naturally occurring L-amino acid enantiomers with D-amino acid forms, lipidation, peptidomimetics, N-methylation, cyclization and exploitation of carrier systems. The development of self-assembling peptides are paving the way for sustained release peptide formulations and already two such licensed examples exist, lanreotide and octreotide. The versatility and tunability of peptide-based products is resulting in increased translation of peptide therapies, however significant challenges remain with regard to their wider implementation. This review highlights some of the notable peptide therapeutics discovered to date and the difficulties encountered by the pharmaceutical industry in translating these molecules to the clinical setting for patient benefit, providing some possible solutions to the most challenging barriers.