Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 119(1): 337-346, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070625

RESUMO

Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be monitored remotely through an active internet connection.


Assuntos
Condicionamento Clássico , Membro Anterior/fisiologia , Movimento , Condicionamento Físico Animal/métodos , Recompensa , Animais , Abrigo para Animais , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/economia , Condicionamento Físico Animal/instrumentação
2.
J Neurosci Methods ; 276: 79-83, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27899319

RESUMO

BACKGROUND: Automation of animal experimentation improves consistency, reduces potential for error while decreasing animal stress and increasing well-being. Radio frequency identification (RFID) tagging can identify individual mice in group housing environments enabling animal-specific tracking of physiological parameters. NEW METHOD: We describe a simple protocol to radio frequency identification (RFID) tag and detect mice. RFID tags were injected sub-cutaneously after brief isoflurane anesthesia and do not require surgical steps such as suturing or incisions. We employ glass-encapsulated 125kHz tags that can be read within 30.2±2.4mm of the antenna. A raspberry pi single board computer and tag reader enable automated logging and cross platform support is possible through Python. RESULTS: We provide sample software written in Python to provide a flexible and cost effective system for logging the weights of multiple mice in relation to pre-defined targets. COMPARISON WITH EXISTING METHODS: The sample software can serve as the basis of any behavioral or physiological task where users will need to identify and track specific animals. Recently, we have applied this system of tagging to automated mouse brain imaging within home-cages. CONCLUSIONS: We provide a cost effective solution employing open source software to facilitate adoption in applications such as automated imaging or tracking individual animal weights during tasks where food or water restriction is employed as motivation for a specific behavior.


Assuntos
Automação Laboratorial/instrumentação , Dispositivo de Identificação por Radiofrequência , Animais , Automação Laboratorial/economia , Automação Laboratorial/métodos , Comportamento Animal , Peso Corporal , Computadores , Injeções Subcutâneas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dispositivo de Identificação por Radiofrequência/economia , Dispositivo de Identificação por Radiofrequência/métodos , Software , Tecnologia sem Fio/economia , Tecnologia sem Fio/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA