RESUMO
PURPOSE: To investigate the developmental stages and genetic etiology of the optical gap phenotype in recessive Stargardt disease (STGD1). METHODS: Single and longitudinal data points from 15 patients, including four sibling pairs, exhibiting an optical gap phenotype on spectral-domain optical coherence tomography (SD-OCT) with confirmed disease-causing ABCA4 alleles were retrospectively analyzed. Fundus images with corresponding SD-OCT scans were collected with a confocal scanning laser ophthalmoscope. Structural phenotypes were assigned to three developmental stages according to SD-OCT. The ABCA4 gene was screened in all patients. RESULTS: At least two disease-causing ABCA4 variants where identified in each patient; all except one (91%) were compound heterozygous for the p.G1961E mutation. All patients exhibited structural findings on SD-OCT that grouped into three progressive developmental stages over several years. Stage 1 was characterized by mild disruptions of the ellipsoid zone (EZ) band over the fovea. Stage 2 was a progressive expansion of the EZ band loss resulting in an empty lesion devoid of photoreceptors. Stage 3 observed a structural collapse of the inner retinal layers into the optical gap space leading to involvement and atrophy of the RPE thereafter. CONCLUSIONS: The optical gap phenotype in STGD1 can be structurally divided into three progressive stages spanning several years. This particular phenotype also appears to be highly associated with the p.G1961E mutation of ABCA4. Taken together, it appears that a focal loss of photoreceptors sequentially precedes RPE dysfunction in the early development of ABCA4-associated optical gap lesions.