Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 599-600: 1171-1180, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28511362

RESUMO

Accurate carbon-balance accounting in forest soils is necessary for the development of climate change policy. However, changes in soil organic carbon (SOC) occur slowly and these changes may not be captured through repeated soil inventories. Simulation models may be used as alternatives to SOC measurement. The Yasso07 model presents a suitable alternative because most of the data required for the application are readily available in countries with common forest surveys. In this study, we test the suitability of Yasso07 for simulating SOC stocks and stock changes in a variety of European forests affected by different climatic, land use and forest management conditions and we address country-specific cases with differing resources and data availability. The simulated SOC stocks differed only slightly from measured data, providing realistic, reasonable mean SOC estimations per region or forest type. The change in the soil carbon pool over time, which is the target parameter for SOC reporting, was generally found to be plausible although not in the case of Mediterranean forest soils. As expected under stable forest management conditions, both land cover and climate play major roles in determining the SOC stock in forest soils. Greater mean SOC stocks were observed in northern latitudes (or at higher altitude) than in southern latitudes (or plains) and conifer forests were found to store a notably higher amount of SOC than broadleaf forests. Furthermore, as regards change in SOC, an inter-annual sink effect was identified for most of the European forest types studied. Our findings corroborate the suitability of Yasso07 to assess the impact of forest management and land use change on the SOC balance of forests soils, as well as to accurately simulate SOC in dead organic matter (DOM) and mineral soil pools separately. The obstacles encountered when applying the Yasso07 model reflect a lack of available input data. Future research should focus on improving our knowledge of C inputs from compartments such as shrubs, herbs, coarse woody debris and fine roots. This should include turnover rates and quality of the litter in all forest compartments from a wider variety of tree species and sites. Despite the limitations identified, the SOC balance estimations provided by the Yasso07 model are sufficiently complete, accurate and transparent to make it suitable for reporting purposes such as those required under the UNFCCC (United Nations Framework Convention on Climate Change) and KP (Kyoto Protocol) for a wide range of forest conditions in Europe.

2.
J Environ Manage ; 181: 498-514, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27420172

RESUMO

The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes.


Assuntos
Ciclo do Carbono , Ecossistema , Taiga , Biomassa , Sequestro de Carbono , Mudança Climática , Finlândia , Modelos Teóricos , Reprodutibilidade dos Testes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA