Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Poult Sci ; 102(10): 102887, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572620

RESUMO

The United States is the largest broiler producer in the world, and Americans consume about 45 kg of chicken per capita per year, which generates substantial economic and environmental footprints. We conduct techno-economic analysis and life cycle assessment (TEA/LCA) to evaluate the sustainability performance of the U.S. broiler industry and quantify the cost, greenhouse gas (GHG) emissions, energy, water, land, fertilizer, and respiratory impacts of 7 broiler production scenarios for a contract Grower, Integrator, and Combined control volume. The assessment is a farm-gate to farm-gate analysis that includes capital cost of chicken houses, labor, chicks brought into the farm, feeds, on-site fuels, and on-site emissions. We found that economics for the Integrator are profitable and dominated by the cost of corn and soybean meal feeds, payments to the Grower, and revenue from live broilers. Additionally, we found that economics for the Grower generate modest return on investment (ROI) largely based on the cost of houses and labor when compared to contract revenue from the Integrator. Environmental impacts for GHG, energy, and respiratory effects are primarily associated with upstream feed production (roughly 65%-80% of total impacts) and on-site fuel consumption (∼20%-35% of total impacts), while those for water, land, and eutrophication are almost entirely attributable to upstream feed production (litter spreading has a low economic allocation factor). Tradeoffs among sustainability metrics are further explored with a sensitivity analysis and by evaluating cost/environmental benefit scenarios.


Assuntos
Galinhas , Gases de Efeito Estufa , Humanos , Estados Unidos , Animais , Meio Ambiente , Fazendas , Zea mays , Água , Efeito Estufa
2.
Redox Biol ; 45: 102048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34167027

RESUMO

Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.


Assuntos
Metabolismo Energético , Lipólise , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Metabolismo Energético/genética , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA