Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35205905

RESUMO

Copper-based preparations have been used for more than 100 years in viticulture to control downy mildew caused by Plasmopara viticola. LC2017, and a new low-copper-based formulation, has been developed to control grapevine trunk diseases (GTDs). Previous greenhouse studies showed the potential of LC2017 to control GTDs by both fungistatic and plant defense elicitor effects. Here, we further characterize the effects of LC2017 in the field determining its impact on: (i) incidence of Esca, (ii) the vine microbiome, (iii) the vine physiology and (iv) enological parameters of juices. We observed a progressive decrease of cumulate Esca incidence in treated vines over the years with annual fluctuation related to the known erratic emergence of GTD symptoms. Neither harmful effects of LC2017 on the vine microbiota, nor on vine physiology were observed (at both transcriptomic and metabolomic levels). Similarly, no impact of LC2017 was observed on the enological properties of berries except for sugar content in juice from esca-diseased vines. The most important result concerns the transcriptomic profiles: that of diseased and LC2017 treated vines differs from that of disease untreated ones, showing a treatment effect. Moreover, the transcriptomic profile of diseased and LC2017-treated vines is similar to that of untreated asymptomatic vines, suggesting control of the disease.

2.
Plant Physiol Biochem ; 133: 134-141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30408676

RESUMO

Elicitor-induced resistance against diseases is an attractive strategy that could contribute to reduce the use of fungicides for plant protection. However, activation of defenses has an energetic cost that plants have to fuel by a mobilization of their primary metabolism with possible adverse effect on their physiology. In this context, this study was performed to determine whether elicitor-induced resistance of grapevine leaves against downy mildew impacted its development and metabolism. The elicitor PS3 (sulfated ß-glucan laminarin) was sprayed on grapevine herbaceous cuttings grown in greenhouses once or three times, and its impact was studied on young and older grapevine leaves, prior to, and after Plasmopara viticola inoculation. PS3 did not affect grapevine development during the time course of the experiment. A metabolomic analysis, mainly focused on primary metabolites, highlighted a leaf age dependent effect of PS3 treatment. Nitrogen compounds, and sugars to a lesser extent, were impacted. The results obtained complete the current knowledge of the impact of elicitor-induced resistance on plant physiology. They will be helpful to guide further experiments required to better determine the costs and benefits of elicitor-induced resistance in plants.


Assuntos
Resistência à Doença/efeitos dos fármacos , Glucanos/farmacologia , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta , Vitis , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Vitis/metabolismo , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA