Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Pathol ; 45(4): 506-525, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485676

RESUMO

Clofibrate is a known rodent hepatotoxicant classically associated with hepatocellular hypertrophy and increased serum activities of cellular alanine aminotransferase/aspartate aminotransferase (ALT/AST) in the absence of microscopic hepatocellular degeneration. At toxic dose, clofibrate induces liver and skeletal muscle injury. The objective of this study was to assess novel liver and skeletal muscle biomarkers following clofibrate administration in Wistar rats at different dose levels for 7 days. In addition to classical biomarkers, liver injury was assessed by cytokeratin 18 (CK18) cleaved form, high-mobility group box 1, arginase 1 (ARG1), microRNA 122 (miR-122), and glutamate dehydrogenase. Skeletal muscle injury was evaluated with fatty acid binding protein 3 (Fabp3) and myosin light chain 3 (Myl3). Clofibrate-induced hepatocellular hypertrophy and skeletal muscle degeneration (type I rich muscles) were noted microscopically. CK, Fabp3, and Myl3 elevations correlated to myofiber degeneration. Fabp3 and Myl3 outperformed CK for detection of myofiber degeneration of minimal severity. miR-122 and ARG1 results were significantly correlated and indicated the absence of liver toxicity at low doses of clofibrate, despite increased ALT/AST activities. Moreover, combining classical and novel biomarkers (Fabp3, Myl3, ARG1, and miR-122) can be considered a valuable strategy for differentiating increased transaminases due to liver toxicity from skeletal muscle toxicity.


Assuntos
Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Clofibrato/efeitos adversos , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Anticolesterolemiantes/administração & dosagem , Arginase/sangue , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Colesterol/sangue , Colinesterases/sangue , Clofibrato/administração & dosagem , Creatinina/sangue , Relação Dose-Resposta a Droga , Proteína 3 Ligante de Ácido Graxo/sangue , Glutamato Desidrogenase/sangue , Queratina-18/sangue , Fígado/metabolismo , Masculino , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Cadeias Leves de Miosina/sangue , Ratos , Ratos Wistar , Triglicerídeos/sangue
2.
Toxicol Sci ; 157(1): 112-128, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123102

RESUMO

Non-human primates (NHPs) are currently considered to be the non-rodent species of choice for the preclinical safety assessment of single-stranded oligonucleotide (SSO) drugs. We evaluated minipigs as a potential alternative to NHPs to test the safety of this class of compounds. Four different phosphorothioated locked nucleic acid-based SSOs (3 antisense and 1 anti-miR), all with known safety profiles, were administered to minipigs using similar study designs and read-outs as in earlier NHP studies with the same compounds. The studies included toxicokinetic investigations, in-life monitoring, clinical and anatomic pathology. In the minipig, we demonstrated target engagement by the SSOs where relevant, and a similar toxicokinetic behavior in plasma, kidney, and liver when compared with NHPs. Clinical tolerability was similar between minipig and NHPs. For the first time, we showed similar and dose-dependent effects on the coagulation and complement cascade after intravenous dosing similar to those observed in NHPs. Similar to NHPs, morphological changes were seen in proximal tubular epithelial cells of the kidney, Kupffer cells, hepatocytes, and lymph nodes. Minipigs appeared more sensitive to the high-dose kidney toxicity of most of the selected SSOs than NHPs. No new target organ or off-target toxicities were identified in the minipig. The minipig did not predict the clinical features of human injection site reactions better than the NHPs, but histopathological similarities were observed between minipigs and NHPs. We conclude that there is no impediment, as default, to the use of minipigs as the non-rodent species in SSO candidate non-clinical safety packages.


Assuntos
Modelos Animais , Oligonucleotídeos/toxicidade , Porco Miniatura , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Feminino , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Suínos , Distribuição Tecidual , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA