RESUMO
PURPOSE: [18F]PI-2620 positron emission tomography (PET) detects misfolded tau in progressive supranuclear palsy (PSP) and Alzheimer's disease (AD). We questioned the feasibility and value of absolute [18F]PI-2620 PET quantification for assessing tau by regional distribution volumes (VT). Here, arterial input functions (AIF) represent the gold standard, but cannot be applied in routine clinical practice, whereas image-derived input functions (IDIF) represent a non-invasive alternative. We aimed to validate IDIF against AIF and we evaluated the potential to discriminate patients with PSP and AD from healthy controls by non-invasive quantification of [18F] PET. METHODS: In the first part of the study, we validated AIF derived from radial artery whole blood against IDIF by investigating 20 subjects (ten controls and ten patients). IDIF were generated by manual extraction of the carotid artery using the average and the five highest (max5) voxel intensity values and by automated extraction of the carotid artery using the average and the maximum voxel intensity value. In the second part of the study, IDIF quantification using the IDIF with the closest match to the AIF was transferred to group comparison of a large independent cohort of 40 subjects (15 healthy controls, 15 PSP patients and 10 AD patients). We compared VT and VT ratios, both calculated by Logan plots, with distribution volume (DV) ratios using simplified reference tissue modelling and standardized uptake value (SUV) ratios. RESULTS: AIF and IDIF showed highly correlated input curves for all applied IDIF extraction methods (0.78 < r < 0.83, all p < 0.0001; area under the curves (AUC): 0.73 < r ≤ 0.82, all p ≤ 0.0003). Regarding the VT values, correlations were mainly found between those generated by the AIF and by the IDIF methods using the maximum voxel intensity values. Lowest relative differences (RD) were observed by applying the manual method using the five highest voxel intensity values (max5) (AIF vs. IDIF manual, avg: RD = -82%; AIF vs. IDIF automated, avg: RD = -86%; AIF vs. IDIF manual, max5: RD = -6%; AIF vs. IDIF automated, max: RD = -26%). Regional VT values revealed considerable variance at group level, which was strongly reduced upon scaling by the inferior cerebellum. The resulting VT ratio values were adequate to detect group differences between patients with PSP or AD and healthy controls (HC) (PSP target region (globus pallidus): HC vs. PSP vs. AD: 1.18 vs. 1.32 vs. 1.16; AD target region (Braak region I): HC vs. PSP vs. AD: 1.00 vs. 1.00 vs. 1.22). VT ratios and DV ratios outperformed SUV ratios and VT in detecting differences between PSP and healthy controls, whereas all quantification approaches performed similarly in comparing AD and healthy controls. CONCLUSION: Blood-free IDIF is a promising approach for quantification of [18F]PI-2620 PET, serving as correlating surrogate for invasive continuous arterial blood sampling. Regional [18F]PI-2620 VT show large variance, in contrast to regional [18F]PI-2620 VT ratios scaled with the inferior cerebellum, which are appropriate for discriminating PSP, AD and healthy controls. DV ratios obtained by simplified reference tissue modeling are similarly suitable for this purpose.
Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Tomografia por Emissão de Pósitrons/métodos , Masculino , Feminino , Idoso , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Automação , Estudos de Casos e Controles , Compostos Radiofarmacêuticos/farmacocinéticaRESUMO
Prior authorization criteria for Federal Drug Administration (FDA) approved immunotherapeutics, among the class of anti-amyloid monoclonal antibodies (mAbs), established by state drug formulary committees, are tailored for adults with late-onset Alzheimer's disease. This overlooks adults with Down syndrome (DS), who often experience dementia at a younger age and with different diagnostic assessment outcomes. This exclusion may deny DS adults access to potential disease-modifying treatments. To address this issue, an international expert panel convened to establish adaptations of prescribing criteria suitable for DS patients and parameters for access to Centers for Medicare & Medicaid Services (CMS) registries. The panel proposed mitigating disparities by modifying CMS and payer criteria to account for younger onset age, using alternative language and assessment instruments validated for cognitive decline in the DS population. The panel also recommended enhancing prescribing clinicians' diagnostic capabilities for DS and initiated awareness-raising activities within healthcare organizations. These efforts facilitated discussions with federal officials, aimed at achieving equity in access to anti-amyloid immunotherapeutics, with implications for national authorities worldwide evaluating these and other new disease-modifying therapeutics for Alzheimer's disease.
Assuntos
Síndrome de Down , Humanos , Estados Unidos , Doença de Alzheimer/tratamento farmacológico , Adulto , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodosRESUMO
OBJECTIVE: In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS: A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS: [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION: [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.
Assuntos
Peptídeos beta-Amiloides , Fluordesoxiglucose F18 , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Camundongos Transgênicos , Cintilografia , Modelos Animais de Doenças , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
PURPOSE: Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS: We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to ß-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS: The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION: The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Fluordesoxiglucose F18 , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , PerfusãoRESUMO
Dementias are expensive diseases: the net annual cost in European healthcare is about 28.000 per case with a strong stage dependency, of which medical care accounts for about 19%. Diagnostic costs, on the other hand, account for only a small proportion of the total costs. With changes in the guidelines, biomarker tests are becoming increasingly important. At present, the concrete economic impact of biomarker-based diagnosis is largely unknown. To determine the actual costs of diagnostic procedures based on guidelines, we conducted a survey among the members of the German Memory Clinic Network (DNG). From 15 expert centres, the staff engagement time for all procedures was collected. Based on the individual engagement times of the different professions, the total of personnel costs for diagnostics was calculated using current gross personnel costs. The total sum of diagnostic costs (personnel plus procedures) was calculated for three different scenarios e. g. 633,97 for diagnostics without biomarkers, 1.214,90 for diagnostics with CSF biomarkers and 4.740,58 for diagnostics with FDG- plus Amyloid-PET. In addition, the actual diagnostic costs of the current practice in expert memory clinics were estimated, taking into account personnel costs, costs for the different procedures and the frequency of their use across all patients. This results in total average costs of 1.394,43 per case as the mean across all centres (personnel costs 351,72, costs for diagnostic procedures 1.042,71). The results show that state-of-the-art diagnosis of dementia and pre-dementia states, such as mild cognitive impairment (MCI) requires financial resources, which are currently not fully reimbursed in Germany. The need for a biomarker-based etiological diagnosis of dementia and pre-dementia states will increase, due to availability of disease-modifying treatments. Therefore, the current gap of reimbursement must be filled by new models of compensation.
Assuntos
Disfunção Cognitiva , Demência , Disfunção Cognitiva/diagnóstico , Demência/diagnóstico , Diagnóstico Precoce , Alemanha , Custos de Cuidados de Saúde , HumanosRESUMO
Objectives: Autoradiography on brain tissue is used to validate binding targets of newly discovered radiotracers. The purpose of this study was to correlate quantification of autoradiography signal using the novel next-generation tau positron emission tomography (PET) radiotracer [18F]PI-2620 with immunohistochemically determined tau-protein load in both formalin-fixed paraffin-embedded (FFPE) and frozen tissue samples of patients with Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). Methods: We applied [18F]PI-2620 autoradiography to postmortem cortical brain samples of six patients with AD, five patients with PSP and five healthy controls, respectively. Binding intensity was compared between both tissue types and different disease entities. Autoradiography signal quantification (CWMR = cortex to white matter ratio) was correlated with the immunohistochemically assessed tau load (AT8-staining, %-area) for FFPE and frozen tissue samples in the different disease entities. Results: In AD tissue, relative cortical tracer binding was higher in frozen samples when compared to FFPE samples (CWMRfrozen vs. CWMRFFPE: 2.5-fold, p < 0.001), whereas the opposite was observed in PSP tissue (CWMRfrozen vs. CWMRFFPE: 0.8-fold, p = 0.004). In FFPE samples, [18F]PI-2620 autoradiography tracer binding and immunohistochemical tau load correlated significantly for both PSP (R = 0.641, p < 0.001) and AD tissue (R = 0.435, p = 0.016), indicating a high agreement of relative tracer binding with underlying pathology. In frozen tissue, the correlation between autoradiography and immunohistochemistry was only present in AD (R = 0.417, p = 0.014) but not in PSP tissue (R = -0.115, p = n.s.). Conclusion: Our head-to-head comparison indicates that FFPE samples show superiority over frozen samples for autoradiography assessment of PSP tau pathology by [18F]PI-2620. The [18F]PI-2620 autoradiography signal in FFPE samples reflects AT8 positive tau in samples of both PSP and AD patients.
RESUMO
Down's syndrome is the most frequent genetic cause of intellectual disability. As the risk for developing Alzheimer's disease is increased in Down's syndrome, comprehensive cognitive examination is essential, both in young adults (for baseline evaluation), as well as later for diagnosing dementia. So far, there are only a few recommendations for neuropsychological assessment in Down's syndrome. Here, we review (1) the development of cognition across the life span, (2) various causes of cognitive change in adults with Down's syndrome, and (3) procedures available for their evaluation. Furthermore, (4) we provide recommendations for the assessment and interpretation of diagnostic findings in adults with intellectual disabilities. We conclude with recommendations for cognitive assessment in intellectual disability in general.
Assuntos
Doença de Alzheimer , Síndrome de Down , Cognição , Síndrome de Down/complicações , Síndrome de Down/diagnóstico , Humanos , Longevidade , Testes Neuropsicológicos , Adulto JovemRESUMO
BACKGROUND: Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. OBJECTIVES: The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. METHODS: Specific binding of the 18 kDa translocator protein tracer 18 F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. RESULTS: Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. CONCLUSIONS: Our data indicate that 18 F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Idoso , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/genética , Tauopatias/diagnóstico por imagem , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Importance: Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy. Region-specific tau aggregates establish the neuropathologic diagnosis of definite PSP post mortem. Future interventional trials against tau in PSP would strongly benefit from biomarkers that support diagnosis. Objective: To investigate the potential of the novel tau radiotracer 18F-PI-2620 as a biomarker in patients with clinically diagnosed PSP. Design, Setting, and Participants: In this cross-sectional study, participants underwent dynamic 18F-PI-2620 positron emission tomography (PET) from 0 to 60 minutes after injection at 5 different centers (3 in Germany, 1 in the US, and 1 in Australia). Patients with PSP (including those with Richardson syndrome [RS]) according to Movement Disorder Society PSP criteria were examined together with healthy controls and controls with disease. Four additionally referred individuals with PSP-RS and 2 with PSP-non-RS were excluded from final data analysis owing to incomplete dynamic PET scans. Data were collected from December 2016 to October 2019 and were analyzed from December 2018 to December 2019. Main Outcomes and Measures: Postmortem autoradiography was performed in independent PSP-RS and healthy control samples. By in vivo PET imaging, 18F-PI-2620 distribution volume ratios were obtained in globus pallidus internus and externus, putamen, subthalamic nucleus, substantia nigra, dorsal midbrain, dentate nucleus, dorsolateral, and medial prefrontal cortex. PET data were compared between patients with PSP and control groups and were corrected for center, age, and sex. Results: Of 60 patients with PSP, 40 (66.7%) had RS (22 men [55.0%]; mean [SD] age, 71 [6] years; mean [SD] PSP rating scale score, 38 [15]; score range, 13-71) and 20 (33.3%) had PSP-non-RS (11 men [55.0%]; mean [SD] age, 71 [9] years; mean [SD] PSP rating scale score, 24 [11]; score range, 11-41). Ten healthy controls (2 men; mean [SD] age, 67 [7] years) and 20 controls with disease (of 10 [50.0%] with Parkinson disease and multiple system atrophy, 7 were men; mean [SD] age, 61 [8] years; of 10 [50.0%] with Alzheimer disease, 5 were men; mean [SD] age, 69 [10] years). Postmortem autoradiography showed blockable 18F-PI-2620 binding in patients with PSP and no binding in healthy controls. The in vivo findings from the first large-scale observational study in PSP with 18F-PI-2620 indicated significant elevation of tracer binding in PSP target regions with strongest differences in PSP vs control groups in the globus pallidus internus (mean [SD] distribution volume ratios: PSP-RS, 1.21 [0.10]; PSP-non-RS, 1.12 [0.11]; healthy controls, 1.00 [0.08]; Parkinson disease/multiple system atrophy, 1.03 [0.05]; Alzheimer disease, 1.08 [0.06]). Sensitivity and specificity for detection of PSP-RS vs any control group were 85% and 77%, respectively, when using classification by at least 1 positive target region. Conclusions and Relevance: This multicenter evaluation indicates a value of 18F-PI-2620 to differentiate suspected patients with PSP, potentially facilitating more reliable diagnosis of PSP.
Assuntos
Radioisótopos de Flúor/farmacocinética , Substância Cinzenta/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/normas , Piridinas/farmacocinética , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Biomarcadores/metabolismo , Estudos Transversais , Diagnóstico , Feminino , Substância Cinzenta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Paralisia Supranuclear Progressiva/metabolismoRESUMO
OBJECTIVES: Many predictive or influencing factors have emerged in investigations of the cognitive reserve model of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline in AD, can be assessed by [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural magnetic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-classification. The aim of this study was to calculate residual cognitive performance based on neuronal injury biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual clinical course. METHODS: 110 initially mild cognitive impaired and demented subjects (age 71⯱â¯8â¯years) with a final diagnosis of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting residuals were correlated with years of education. We used multiple regression analysis to calculate the expected MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each biomarker and the predicted residualized memory function were correlated with individual cognitive changes measured during clinical follow-up (27⯱â¯13â¯months). RESULTS: FDG-PET correlated highly with clinical MMSE (Râ¯=â¯-0.49, pâ¯<â¯.01), whereas hippocampal atrophy to MRI (Râ¯=â¯-0.15, pâ¯=â¯.14) and CSFt-tau (Râ¯=â¯-0.12, pâ¯=â¯.22) showed only weak correlations. Residuals of all neuronal injury biomarker regressions correlated significantly with education level, indicating them to be surrogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up for the residuals of stand-alone FDG-PET (Râ¯=â¯-0.36, pâ¯=â¯.01) and the combined residualized memory function model (Râ¯=â¯-0.35, pâ¯=â¯.02). CONCLUSIONS: These findings suggest that subjects with higher cognitive reserve had accumulated more pathology, which subsequently caused a faster cognitive decline over time. Together with previous findings suggesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with an initially protective phase followed by more rapid decompensation once the protection is overwhelmed.