Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849569

RESUMO

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Humanos , Animais , Camundongos , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Sequência de RNA/métodos , Anotação de Sequência Molecular/métodos
2.
PLoS Comput Biol ; 16(3): e1007531, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214318

RESUMO

Life scientists are increasingly turning to high-throughput sequencing technologies in their research programs, owing to the enormous potential of these methods. In a parallel manner, the number of core facilities that provide bioinformatics support are also increasing. Notably, the generation of complex large datasets has necessitated the development of bioinformatics support core facilities that aid laboratory scientists with cost-effective and efficient data management, analysis, and interpretation. In this article, we address the challenges-related to communication, good laboratory practice, and data handling-that may be encountered in core support facilities when providing bioinformatics support, drawing on our own experiences working as support bioinformaticians on multidisciplinary research projects. Most importantly, the article proposes a list of guidelines that outline how these challenges can be preemptively avoided and effectively managed to increase the value of outputs to the end user, covering the entire research project lifecycle, including experimental design, data analysis, and management (i.e., sharing and storage). In addition, we highlight the importance of clear and transparent communication, comprehensive preparation, appropriate handling of samples and data using monitoring systems, and the employment of appropriate tools and standard operating procedures to provide effective bioinformatics support.


Assuntos
Biologia Computacional/economia , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Comunicação , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Projetos de Pesquisa/normas
3.
J Lipid Res ; 46(11): 2477-87, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16150821

RESUMO

Adiponutrin and a related protein, adipocyte triglyceride lipase (ATGL; also known as Desnutrin), were recently described as adipocyte-specific proteins with lipid hydrolase activity. Using bioinformatics, we identified three additional Adiponutrin family members (GS2, GS2-Like, and PNPLA1). Here, we report on the expression, regulation, and activity of GS2 and GS2-Like compared with Adiponutrin and Desnutrin/ATGL. GS2-Like is expressed and regulated in a manner similar to Adiponutrin; however, the absolute levels of mRNA are significantly lower than those of Adiponutrin or Desnutrin/ATGL. GS2 transcripts were identified only in humans and are highly expressed in adipose as well as other tissues. All four proteins show lipase activity in vitro, which is dependent on the presence of the active site serine for Adiponutrin, Desnutrin/ATGL, and GS2. Overexpression of Desnutrin/ATGL, GS2, and GS2-Like, but not Adiponutrin, decreases intracellular triglyceride levels. This is consistent with a function for Desnutrin/ATGL, GS2, and GS2-Like in lipolysis, but not for Adiponutrin. Consistent with previously reported data, Desnutrin/ATGL is upregulated by fasting in adipose tissue, whereas Adiponutrin is downregulated. Additionally, Adiponutrin and GS2-Like, but not Desnutrin/ATGL, are strongly induced in the liver of ob/ob mice. Our data support distinct functions for Adiponutrin and Desnutrin/ATGL and raise the possibility that GS2 may contribute significantly to lipolysis in human adipose tissue.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Triglicerídeos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Northern Blotting , Biologia Computacional/métodos , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Imunoprecipitação , Lipase/metabolismo , Lipólise , Masculino , Cadeias de Markov , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dados de Sequência Molecular , Mutação , Ácido Oleico/química , Filogenia , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esterol Esterase/metabolismo , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA