Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(6)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38346343

RESUMO

Objective. Establishing realistic phantoms of human anatomy is a continuing concern within virtual clinical trials of breast x-ray imaging. However, little attention has been paid to glandular distribution within these phantoms. The principal objective of this study was to develop breast phantoms considering the clinical glandular distribution.Approach. This research introduces an innovative method for integrating glandular distribution information into breast phantoms. We have developed an open-source software, THUBreast44http://github.com/true02Hydrogen/THUBreast/, which generates breast phantoms that accurately replicate both the structural texture and glandular distribution, two crucial elements in breast x-ray imaging and dosimetry. To validate the efficacy of THUBreast, we assembled three groups of breast phantoms (THUBreast, patient-based, homogeneous) for irradiation simulation and calculated the power-law exponents (ß) and mean glandular dose (Dg), indicators of texture realism and radiation risk, respectively, utilizing MC-GPU.Main results. Upon the computation of theDgfor the THUBreast phantoms, it was found to be in agreement with that absorbed by the phantoms based on patients, with an average deviation of 4%. The estimates of averageDgthus obtained were on average 23% less than those computed for the homogeneous phantoms. It was observed that the homogeneous phantoms did overestimate the averageDgby 30% when compared to the phantoms based on patients. The mean value ofßfor the images of THUBreast phantoms was found to be 2.92 ± 0.08, which shows a commendable agreement with the findings of prior investigations.Significance. It is evidently clear from the results that THUBreast phantoms have a preliminary good performance in both imaging and dosimetry in terms of indicators of texture realism and glandular dose. THUBreast represents a further step towards developing a powerful toolkit for comprehensive evaluation of image quality and radiation risk.


Assuntos
Mama , Mamografia , Humanos , Raios X , Mama/diagnóstico por imagem , Mamografia/métodos , Radiometria/métodos , Software , Imagens de Fantasmas , Método de Monte Carlo
2.
Int J Radiat Biol ; 100(4): 595-608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166197

RESUMO

PURPOSE: Oxygen plays a crucial role in radiation biology. Antioxidants and peroxyl radicals affect the oxygen effect greatly. This study aims to establish a computational model of the oxygen effect and explore the effect attributed to antioxidants and peroxyl radicals. MATERIALS AND METHODS: Oxygen-related reactions are added to our track-structure Monte Carlo code NASIC, including oxygen fixation, chemical repair by antioxidants and damage migration from base-derived peroxyl radicals. Then the code is used to simulate the DNA damage under various oxygen, antioxidant and damage migration rate conditions. The oxygen enhancement ratio(OER) is calculated quantifying by the number of double-strand breaks for each condition. The roles of antioxidants and peroxyl radicals are examined by manipulating the relevant parameters. RESULTS AND CONCLUSIONS: Our results indicate that antioxidants are capable of rapidly restoring DNA radicals through chemical reactions, which compete with natural and oxygen fixation processes. Additionally, antioxidants can react with peroxyl radicals derived from bases, thereby preventing the damage from migrating to DNA strands. By quantitatively accounting for the impact of peroxyl radicals and antioxidants on the OER curves, our study establishes a more precise and comprehensive model of the radiation oxygen effect.


Assuntos
Antioxidantes , Oxigênio , Antioxidantes/farmacologia , Antioxidantes/química , Radicais Livres/química , Radicais Livres/efeitos da radiação , Método de Monte Carlo , Peróxidos , DNA/efeitos da radiação
3.
J Radiol Prot ; 43(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538816

RESUMO

Phantoms of different sizes, as indicated by several studies, have a significant impact on the accuracy of dose calculations. Therefore, it is necessary to establish a body-size-dependent series of Chinese standing adult phantoms to improve the accuracy of radiation dosimetry. In this study, the Chinese reference polygon-mesh phantomsCRAM_S/CRAF_Shave been refined and a method for automatically constructing lymph nodes in a mesh phantom has been proposed. Then, based on the refined phantoms, this study has developed 42 anthropometric standing adult computational phantoms, 21 models for each gender, with a height range of 145-185 cm and weight as a function of body mass index corresponding to healthy, overweight and obese. The parameters were extracted from the National Occupational Health Standards (GBZ) document of the People's Republic of China, which covers more than 90% of the Chinese population. For a given body height and mass, phantoms are scaled in proportion to a factor reflecting the change of adipose tissue and the internal organs. The remainder is adjusted manually to match the target parameters. In addition, the constructed body-size-specific phantoms have been implemented in the in-house THUDose Monte Carlo code to calculate the dose coefficients (DCs) for external photon exposures in the antero-posterior, postero-anterior and right lateral geometries. The results showed that organ DCs varied significantly with body size at low energies (<2MeV) and high energies (>8MeV) due to the differences in anatomy. Organ DC differences between a phantom of a given size and a reference phantom vary by up to 40% for the same height and up to 400% for the whole phantom. The influence of body size differences on the DCs demonstrates that the body-size-dependent Chinese adult phantoms hold great promise for a wide range of applications in radiation dosimetry.


Assuntos
População do Leste Asiático , Proteção Radiológica , Humanos , Adulto , Radiometria/métodos , Tamanho Corporal , Estatura , Imagens de Fantasmas , Método de Monte Carlo , Doses de Radiação
4.
Environ Sci Pollut Res Int ; 29(53): 80532-80548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35718849

RESUMO

The rational allocation of chemical fertilizer resources is of strategic importance in mitigating agricultural source pollution and achieving agricultural green development. The spatiotemporal correlation of chemical fertilizer supply/demand and its determinants remains unclear. In this study, based on the inter-provincial chemical fertilizer supply/demand panel data of China from 1994 to 2018, an improved gravity model was employed to determine provincial chemical fertilizer supply/demand correlations. Finally, the chemical fertilizer supply/demand evolution and its driving factors were analyzed using social network analysis and a quadratic assignment procedure. The results indicated that (1) the intensity of the spatial relationship of inter-provincial chemical fertilizer supply/demand increased in a fluctuating fashion, but there was still room for improvement. The network structure presented good stability, and the spillover effect exhibited multiple superposition characteristics; (2) the spatial correlation network of inter-provincial chemical fertilizer supply/demand presented a "core-periphery" distribution pattern of the supply, demand, and balance areas. The division of blocks in the network changed in time and space, and some provinces changed their roles and positions in the network during development; (3) chemical fertilizer-related policies (e.g., Exemption Agricultural Tax, Notice on the resumption of value added tax policy on fertilizers, and Rural Revitalization Strategy) have played a positive role in the formation and development of the interprovincial spatial correlation network of chemical fertilizer supply/demand in China; (4) natural conditions and socioeconomic factors interact to promote the formation of the spatial correlation network of chemical fertilizer supply/demand. The differences in the scale of the rural labor force, the scale of agricultural mechanization, the agricultural planting structure, the populations, and urbanization levels all had a significant impact on it. The identification of the spatial characteristics of chemical fertilizer supply/demand correlation networks offers a new perspective on taking various measures to realize the cross-regional coordination of chemical fertilizer resources, strengthen the protection and utilization of agricultural resources, and promote green agricultural development.


Assuntos
Agricultura , Fertilizantes , Urbanização , Poluição Ambiental , China
5.
Health Phys ; 122(6): 685-695, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35383629

RESUMO

ABSTRACT: Ultra-short, ultra-intense laser facilities could produce ultra-intense pulsed radiation fields. Currently, only passive detectors are fit for dose measurement in this circumstance. Since the laser device could generate a dose up to tens of mSv outside the chamber in tens of picoseconds, resulting in a high instantaneous dose rate of ~107 Sv s-1, it is necessary to perform real-time dose measurement to ensure the safety of nearby workers. Due to fast response and excellent radiation resistance, a diamond-based dose measurement device was designed and developed, and its dose-rate response and its feasibility for such occasions were characterized. The measurement results showed that the detector had a good dose-rate linearity in the range of 3.39 mGy h-1 to 10.58 Gy h-1 for an x-ray source with energy of 39 keV to 208 keV. No saturation phenomenon was observed, and the experimental results were consistent with the results obtained from Monte Carlo simulation. The charge collection efficiency was about 80%. Experimental measurements and simulations with this dose measurement device were carried out based on the "SG-II" laser device. The experimental and simulation results preliminarily verified the feasibility of using the diamond detector to measure the dose generated by ultra-short, ultra-intense laser devices. The results provided valuable information for the follow-up real-time dose measurement work of ultra-short, ultra-intense laser devices.


Assuntos
Diamante , Radiometria , Humanos , Lasers , Método de Monte Carlo , Radiometria/métodos , Raios X
6.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35133302

RESUMO

The mechanism of the FLASH effect remains unclear and could be revealed by studying chemical reactions during irradiation. Monte Carlo simulation of the radiolytic species is an effective tool to analyze chemical reactions, but the simulation is limited by computing costs of the step-by-step simulation of radiolytic species, especially when considering beam with complex time structure. The complexity of the time structure of beams from accelerators in FLASH radiotherapy requires a high-performance Monte Carlo code. In this work, we develop a CPU-GPU coupling accelerating code with the independent reaction times (IRT) method to extend the chemical module of our nanodosimetry Monte Carlo code NASIC. Every chemical molecule in the microenvironment contains time information to consider the reactions from different tracks and simulate beams with complex time structures. Performance test shows that our code significantly improved the computing efficiency of the chemical module by four orders of magnitude. Then the code is used to study the oxygen depletion hypothesis in FLASH radiotherapy for different conditions by setting different parameters. The transient oxygen consumption rate values in the water are calculated when the pulses width ranges from 2 ps to 2µs, the total dose ranges from 0.5 Gy to 100 Gy and the initial oxygen concentration ranges from 0.1% to 21%. The time evolution curves are simulated to study the effect of the time structure of an electron linear accelerator. Results show that the total dose in several microseconds is a better indicator reflecting the radiolytic oxygen consumption rate than the dose rate. The initial oxygen greatly affects the oxygen consumption rate because of the reaction competition. The diffusion of oxygen determined by the physiological parameters is the key factor affecting oxygen depletion during the radiation using electron linear accelerators. Our code provides an efficient tool for simulating water radiolysis in different conditions.


Assuntos
Elétrons , Água , Método de Monte Carlo , Oxigênio , Tempo de Reação , Água/química
7.
Sci Total Environ ; 802: 149585, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454149

RESUMO

The impacts of COVID-19 lockdowns on air quality around the world have received wide attention. In comparison, assessments of the implications for water quality are relatively rare. As the first country impacted by COVID-19, China implemented local and national lockdowns that shut down industries and businesses between January and May 2020. Based on monthly field measurements (N = 1693) and daily automonitoring (N = 65), this study analyzed the influence of the COVID-19 lockdown on river water quality in China. The results showed significant improvements in river water quality during the lockdown period but out-of-step improvements for different indicators. Reductions in ammonia nitrogen (NH4+-N) began relatively soon after the lockdown; chemical oxygen demand (COD) and dissolved oxygen (DO) showed improvements beginning in late January/early February and mid-March, respectively, while increases in pH were more temporally concentrated in the period from mid-March to early May. Compared to April 2019, the Water Quality Index increased at 67.4% of the stations in April 2020, with 75.9% of increases being significant. Changes in water quality parameters also varied spatially for different sites and were mainly determined by the locations and levels of economic development. After the lifting of the lockdown in June, all water quality parameters returned to pre-COVID-19 lockdown conditions. Our results clearly demonstrate the impacts of human activities on water quality and the potential for reversing ecosystem degradation by better management of wastewater discharges to replicate the beneficial impacts of the COVID-19 lockdown. CAPSULE SUMMARY: River water quality improved during China's COVID-19 lockdown, but returned to normal conditions after the lockdown.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Controle de Doenças Transmissíveis , Ecossistema , Monitoramento Ambiental , Humanos , Material Particulado/análise , Rios , SARS-CoV-2 , Qualidade da Água
8.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771534

RESUMO

High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to improve tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent healthy tissue. This paper summarizes the main findings of a joint research program which applied AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparamagnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically based mathematical model was developed to predict the biological response of AuNPs in radiation enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement, simulations relating to the generation of chemical radicals and the induction of DNA strand breaks induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simulated enhancements at molecular and cellular levels indicate that further investigations are necessary to better understand the impact of the physical, chemical, and biological parameters in preclinical experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.

9.
Phys Med Biol ; 66(19)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34407526

RESUMO

Pediatric patients are in a growing stage with more dividing cells than adults. Therefore, they are more sensitive to the radiation dose when undergoing computed tomography (CT) scanning. It is necessary and essential to assess the organ absorbed dose and effective dose to children. Monte Carlo simulation with computational phantoms is one of the most used methods for dose calculation in medical imaging and radiotherapy. Because of the vast change of the pediatric body with age increasing, many research groups developed series pediatric phantoms for various ages. However, most of the existing pediatric reference phantoms were developed based on Caucasian populations, which is not conformable to Chinese pediatric patients. The use of different phantoms can contribute to a difference in the dose calculation. To assess the CT dose of Chinese pediatric patients more accurately, we developed the Chinese pediatric reference phantoms series, including the 3-month (CRC3m), 1-year-old (CRC01), 5-year-old (CRC05), 10-year-old (CRC10), 15-year-old male (CRCM15), and a 15-year-old female (CRCF15) phantoms. Furthermore, we applied them to dose assessment of patients undergoing CT scanning. The GE LightSpeed 16 CT scanner was simulated and the paper presents the detailed process of phantoms development and the establishment of the CT dose database (with x-ray tube voltages of 120, 100 and 80 kVp, with collimators of 20, 10, and 5 mm width, with filters for head and body), compares for the 1-year-old results with other results based on different phantoms and analyzes the CT dose calculation results. It was found that the difference in phantoms' characteristics, organ masses and positions had a significant impact on the CT dose calculation outcomes. For the 1-year-old phantom, the dose results of organs fully covered by the x-ray beam were within 10% difference from the results of other studies. For organs partially covered and not covered by the scan range, the maximum differences came up to 84% (stomach dose, chest examinations) and 463% (gonads dose, chest examinations) respectively. The findings are helpful for the dose optimization of Chinese pediatric patients undergoing CT scanning. The developed phantoms could be applied in dose estimation of other medical modalities.


Assuntos
Tomografia Computadorizada por Raios X , Adolescente , Adulto , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
10.
Phys Med Biol ; 66(18)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34464946

RESUMO

Purpose.Recent studies suggest ultra-high dose rate (FLASH) irradiation can spare normal tissues from radiotoxicity, while efficiently controlling the tumor, and this is known as the 'FLASH effect'. This study performed theoretical analyses about the impact of radiolytic oxygen depletion (ROD) on the cellular responses after FLASH irradiation.Methods.Monte Carlo simulation was used to model the ROD process, determine the DNA damage, and calculate the amount of oxygen depleted (LROD) during FLASH exposure. A mathematical model was applied to analyze oxygen tension (pO2) distribution in human tissues and the recovery of pO2after FLASH irradiation. DNA damage and cell survival fractions (SFs) after FLASH irradiation were calculated. The impact of initial cellular pO2, FLASH pulse number, pulse interval, and radiation quality of the source particles on ROD and subsequent cellular responses were systematically evaluated.Results.The simulated electronLRODrange was 0.38-0.43µM Gy-1when pO2ranged from 7.5 to 160 mmHg. The calculated DNA damage and SFs show that the radioprotective effect is only evident in cells with a low pO2. Different irradiation setups alter the cellular responses by modifying the pO2. Single pulse delivery or multi-pulse delivery with pulse intervals shorter than 10-50 ms resulted in fewer DNA damages and higher SFs. Source particles with a low linear energy transfer (LET) have a higher capacity to deplete oxygen, and thus, lead to a more conspicuous radioprotective effect.Conclusions. A systematic analysis of the cellular response following FLASH irradiation was performed to provided suggestions for future FLASH applications. The FLASH radioprotective effect due to ROD may only be observed in cells with a low pO2. Single pulse delivery or multi-pulse delivery with short pulse intervals are suggested for FLASH irradiation to avoid oxygen tension recovery during pulse intervals. Source particles with low LET are preferred for their conspicuous radioprotective effects.


Assuntos
Neoplasias , Oxigênio , Simulação por Computador , Humanos , Transferência Linear de Energia , Método de Monte Carlo
11.
Med Phys ; 48(9): 5511-5521, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287941

RESUMO

PURPOSE: Research regarding cellular responses at different oxygen concentrations (OCs) is of immense interest within the field of radiobiology. Therefore, this study aimed to develop a mechanistic model to analyze cellular responses at different OCs. METHODS: A DNA damage model (the different cell oxygen level DNA damage [DICOLDD] model) that examines the oxygen effect was developed based on the oxygen fixation hypothesis, which states that dissolved oxygen can modify the reaction kinetics of DNA-derived radicals generated by ionizing radiation. The generation of DNA-derived radicals was simulated using the Monte Carlo method. The decay of DNA-derived radicals due to the competing processes of chemical repair, oxygen fixation, and intrinsic damaging was described using differential equations. The DICOLDD model was fitted to the previous experimental data obtained under different irradiation configurations and validated by calculating the yields of DNA double-strand breaks (DSBs) after exposure to 137 Cs as well as cell survival fractions (SFs) using a mechanistic model of cellular survival. Moreover, we used the DICOLDD model to calculate DNA DSB damage yields after irradiation with 0.5-50 MeV protons. RESULTS: Generally, DSB yields calculated after exposure to 137 Cs at different OCs correspond to statistical uncertainties of previous experimental results. Calculated SFs of CHO and V79 cells exposed to photons, protons, and alpha particles at different OCs generally concur with those obtained in previous studies. Our results demonstrated that the variation in DSB yields was less than 10% when the cellular OC decreased from 21% to 5%. Additionally, DSB yields changed drastically when OC dropped below 1%. CONCLUSIONS: We developed a DNA damage model to evaluate the oxygen effect and provide evidence that a reaction-kinetic model of DNA-derived radicals induced by ionizing radiation suffices to explain the observed oxygen effects. Therefore, the DICOLDD model is a powerful tool for the analysis of cellular responses at different OCs after exposure to different types of radiation.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Método de Monte Carlo , Oxigênio , Radiação Ionizante
12.
Radiat Res ; 196(2): 175-182, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979443

RESUMO

A seed-loading device was designed and modeled using the Monte Carlo method to verify the biological effect of iodine-125 (125I) particles on blood vessels through animal experiments. The dose distribution characteristics of irradiated vessels were established by adjusting the design variables and geometry. The deviation between the actual value and the theoretical value was verified in vitro by the thermoluminescence dosimetry (TLD) method. After verification, the device was used to examine the biological effect of 125I irradiation of canine carotid arteries in two dogs (and one control dog) for 180 days. The hollow cylinder seed-loading device was constructed with an inner diameter of 0.5 cm and a length of 3.3 cm. When six seeds were loaded into a single layer, the source strength ratio of the intermediate layer to the edge layer was 0.7:1. When six layers of seeds were arranged at 0.45-cm intervals, the deviations between the maximum, minimum and mean energy fluence within 2.25 cm of the vessel wall were 2.19% and -4.12%, respectively, and -9% and 4%, respectively, when verified in vitro using TLD. The carotid arteries showed good tolerance to 0.56 kGy (range of 0.51-0.58 kGy) after 180 days of irradiation. In conclusion, this 125I seed-loading device overcomes the random distribution of seeds and lays an accurate radiophysical foundation for subsequent biological experiments. The preliminary results showed that the carotid artery has good tolerance to 0.56 kGy irradiation.


Assuntos
Artérias Carótidas/efeitos da radiação , Radioisótopos do Iodo/farmacologia , Animais , Anisotropia , Artérias Carótidas/patologia , Simulação por Computador , Cães , Humanos , Radioisótopos do Iodo/química , Método de Monte Carlo , Imagens de Fantasmas , Próteses e Implantes , Dosagem Radioterapêutica
13.
Radiat Res ; 194(1): 9-21, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32401689

RESUMO

The cellular response to ionizing radiation continues to be of significant research interest in cancer radiotherapy, and DNA is recognized as the critical target for most of the biologic effects of radiation. Incident particles can cause initial DNA damages through physical and chemical interactions within a short time scale. Initial DNA damages can undergo repair via different pathways available at different stages of the cell cycle. The misrepair of DNA damage results in genomic rearrangement and causes mutations and chromosome aberrations, which are drivers of cell death. This work presents an integrated study of simulating cell response after proton irradiation with energies of 0.5-500 MeV (LET of 60-0.2 keV/µm). A model of a whole nucleus with fractal DNA geometry was implemented in TOPAS-nBio for initial DNA damage simulations. The default physics and chemistry models in TOPAS-nBio were used to describe interactions of primary particles, secondary particles, and radiolysis products within the nucleus. The initial DNA double-strand break (DSB) yield was found to increase from 6.5 DSB/Gy/Gbp at low-linear energy transfer (LET) of 0.2 keV/µm to 21.2 DSB/Gy/Gbp at high LET of 60 keV/µm. A mechanistic repair model was applied to predict the characteristics of DNA damage repair and dose response of chromosome aberrations. It was found that more than 95% of the DSBs are repaired within the first 24 h and the misrepaired DSB fraction increases rapidly with LET and reaches 15.8% at 60 keV/µm with an estimated chromosome aberration detection threshold of 3 Mbp. The dicentric and acentric fragment yields and the dose response of micronuclei formation after proton irradiation were calculated and compared with experimental results.


Assuntos
Modelos Biológicos , Método de Monte Carlo , Prótons , Aberrações Cromossômicas/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Transferência Linear de Energia/efeitos da radiação
14.
Appl Radiat Isot ; 157: 109042, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32063335

RESUMO

In response to the urgent requirement of material screening in rare event experiments, a new ARray of GermaniUm γ-ray Spectrometer (ARGUS) is planned to be established in China Jinping Underground Laboratory (CJPL). The spectrometer was optimized with Monte Carlo simulation using Geant4. Five HPGe detectors were combined in ARGUS for higher efficiency. Two shielding systems, one with liquid nitrogen, the other with lead plus copper were evaluated. With the combination of multiple detectors, low activity materials and the optimized design of shielding systems, the decision threshold at the level of 10µBq/kg for 238U/232Th decay chain could be achieved.

15.
Phys Med Biol ; 65(8): 085015, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32101803

RESUMO

Monte Carlo (MC) track structure simulation tools are commonly used for predicting radiation induced DNA damage by modeling the physical and chemical reactions at the nanometer scale. However, the outcome of these MC simulations is particularly sensitive to the adopted parameters which vary significantly across studies. In this study, a previously developed full model of nuclear DNA was used to describe the DNA geometry. The TOPAS-nBio MC toolkit was used to investigate the impact of physics and chemistry models as well as three key parameters (the energy threshold for direct damage, the chemical stage time length, and the probability of damage between hydroxyl radical reactions with DNA) on the induction of DNA damage. Our results show that the difference in physics and chemistry models alone can cause differences up to 34% and 16% in the DNA double strand break (DSB) yield, respectively. Additionally, changing the direct damage threshold, chemical stage length, and hydroxyl damage probability can cause differences of up to 28%, 51%, and 71% in predicted DSB yields, respectively, for the configurations in this study.


Assuntos
Dano ao DNA , Modelos Biológicos , Prótons , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Método de Monte Carlo
16.
Phys Med Biol ; 64(14): 145004, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31117056

RESUMO

Microdosimetric energy depositions have been suggested as a key variable for the modeling of the relative biological effectiveness (RBE) in proton and ion radiation therapy. However, microdosimetry has been underutilized in radiation therapy. Recent advances in detector technology allow the design of new mico- and nano-dosimeters. At the same time Monte Carlo (MC) simulations have become more widely used in radiation therapy. In order to address the growing interest in the field, a microdosimetric extension was developed in TOPAS. The extension provides users with the functionality to simulate microdosimetric spectra as well as the contribution of secondary particles to the spectra, calculate microdosimetric parameters, and determine RBE with a biological weighting function approach or with the microdosimetric kinetic (MK) model. Simulations were conducted with the extension and the results were compared with published experimental data and other simulation results for three types of microdosimeters, a spherical tissue equivalent proportional counter (TEPC), a cylindrical TEPC and a solid state microdosimeter. The corresponding microdosimetric spectra obtained with TOPAS from the plateau region to the distal tail of the Bragg curve generally show good agreement with the published data.


Assuntos
Microtecnologia/instrumentação , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/instrumentação , Eficiência Biológica Relativa , Humanos , Prótons , Radiometria/métodos
17.
Phys Med Biol ; 63(19): 195001, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30183674

RESUMO

Currently, the relative biological effectiveness (RBE) is assumed to be constant with a value of 1.1 in proton therapy. Although trends of RBE variations are well known, absolute values in patients are associated with considerable uncertainties. This study aims to evaluate the impact of a variable proton RBE in proton therapy liver trials using different fractionation schemes. Sixteen liver cancer cases were evaluated assuming two clinical schedules of 40 Gy/5 fractions and 58.05 Gy/15 fractions. The linear energy transfer (LET) and physical dose distribution in patients were simulated using Monte Carlo. The variable RBE distribution was calculated using a phenomenological model, considering the influence of the LET, fraction size and α/ß value. Further, models to predict normal tissue complication probability (NTCP) and tumor control probability (TCP) were used to investigate potential RBE effects on outcome predictions. Applying the variable RBE model to the 5 and 15 fractions schedules results in an increase in mean fraction-size equivalent dose (FED) to the normal liver of 5.0% and 9.6% respectively. For patients with a mean FED to the normal liver larger than 29.8 Gy, this results in a non-negligible increase in the predicted NTCP of the normal liver averaging 11.6%, ranging from 2.7% to 25.6%. On the other hand, decrease in TCP was less than 5% for both fractionation regimens for all patients when assuming a variable RBE instead of constant. Consequently, the difference in TCP between the two fractionation schedules did not change significantly assuming a variable RBE while the impact on the NTCP difference was highly case specific. In addition, both the NTCP and TCP decrease with increasing α/ß value for both fractionation schemes, with the decreases being more pronounced when using a variable RBE compared to using RBE = 1.1. Assuming a constant RBE of 1.1 most likely overestimates the therapeutic ratio in proton therapy for liver cancer, predominantly due to underestimation of the RBE-weighted dose to the normal liver. The impact of applying a variable RBE (as compared to RBE = 1.1) on the NTCP difference of the two fractionation regimens is case dependent. A variable RBE results in a slight increase in TCP difference. Variations in patient radiosensitivity increase when using a variable RBE.


Assuntos
Neoplasias Hepáticas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Prótons
18.
J Radiol Prot ; 38(3): 990-1012, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29856364

RESUMO

As radon is one of the most important natural radiation sources, its radiation hazard has always been a concern. α and ß particles emitted by short-lived radioactive radon progeny nuclides could result in a high local dose and induce radiation damage to the respiratory tract. A detailed respiratory tract model needs to be built and dose distribution in the respiratory tract should be studied to reflect the characteristics of energy deposition caused by radon and its progeny. Therefore, in the present work, a dosimetric study was conducted on the respiratory tract and non-uniform dose distribution in the bronchial region was studied. First, a detailed voxel respiratory tract model was established based on the anatomic bronchial parameters of an adult Chinese male. The dimensional parameters of the tracheo-bronchial tree of an adult male adopted in ICRP Publication 66 (ICRP 1994 Human Respiratory Tract Model for Radiological Protection ICRP Publication 66 (Oxford: Pergamon)), featured by consecutive 16 generations of bronchi structures to express the irregular structure of the respiratory tract and the radiosensitive tissues in the bronchial region, were also built for dosimetric study. Then the deposition and clearance models recommended by ICRP were used to analyse the regional deposition and transfer in the respiratory tract, and a fluid dynamic simulation was used to obtain 3D distribution of radon progeny aerosol particles in the bronchial region. The result showed that the highest deposition fraction density occurs at the first and second generations of bronchi. Furthermore, the detailed voxel respiratory tract model along with the Monte Carlo method were used to obtain dose distribution in the BB region. It was found that the dose distribution in the respiratory tract is very non-uniform and the maximum voxel dose is about 30 times higher than the average voxel dose. The dose conversion factor (DCF) for lung in the home environment derived with the dosimetry method in the present work is 9.86 mSv·WLM-1. Sensitivity analysis was performed for the parameters involved in the DCF calculation and it was found that the unattached fraction and breathing rate influence the DCF the most.


Assuntos
Brônquios/efeitos da radiação , Método de Monte Carlo , Doses de Radiação , Proteção Radiológica , Radônio/análise , Adulto , Aerossóis , Partículas alfa , Humanos , Hidrodinâmica , Masculino
19.
Radiat Prot Dosimetry ; 181(3): 221-228, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438509

RESUMO

Not only the mean glandular dose (MGD) but also the glandular dose distribution is important in describing the radiation exposure to breast in mammography. For a more precise knowledge of the absorbed dose distribution in the breast, experimental measurements with thermoluminescence dosemeter and Monte Carlo simulations with Geant4 were performed in this study. The experimental measurements with homogeneous physical breast phantoms were used to validate Monte Carlo simulations of homogeneous mathematical breast models undergoing mammography. Then a 3D detailed breast model with a compressed breast thickness of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the absorbed dose distribution inside the breast undergoing mammography. Furthermore, the effects of the glandular tissue distribution on MGD were studied by reversing the breast model in head-toe direction to get a breast model with a different distribution of glandular tissues.


Assuntos
Mama/efeitos da radiação , Mamografia/métodos , Modelos Biológicos , Método de Monte Carlo , Imagens de Fantasmas , Exposição à Radiação/análise , China , Simulação por Computador , Feminino , Humanos , Imageamento Tridimensional , Doses de Radiação
20.
Phys Med Biol ; 63(1): 015008, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240558

RESUMO

In the heavy ion therapy, not only the distribution of physical absorbed dose, but also the relative biological effectiveness (RBE) weighted dose needs to be taken into account. The microdosimetric kinetic model (MKM) can predict the RBE value of heavy ions with saturation-corrected dose-mean specific energy, which has been used in clinical treatment planning at the National Institute of Radiological Sciences. In the theoretical assumption of the MKM, the yield of the primary lesion is independent of the radiation quality, while the experimental data shows that DNA double strand break (DSB) yield, considered as the main primary lesion, depends on the LET of the particle. Besides, the ß parameter of the MKM is constant with LET resulting from this assumption, which also differs from the experimental conclusion. In this study, a modified MKM was developed, named MMKM. Based on the experimental DSB yield of mammalian cells under the irradiation of ions with different LETs, a RBEDSB (RBE for the induction of DSB)-LET curve was fitted as the correction factor to modify the primary lesion yield in the MKM, and the variation of the primary lesion yield with LET is considered in the MMKM. Compared with the present the MKM, not only the α parameter of the MMKM for mono-energetic ions agree with the experimental data, but also the ß parameter varies with LET and the variation trend of the experimental result can be reproduced on the whole. Then a spread-out Bragg peaks (SOBP) distribution of physical dose was simulated with Geant4 Monte Carlo code, and the biological and clinical dose distributions were calculated, under the irradiation of carbon ions. The results show that the distribution of clinical dose calculated with the MMKM is closed to the distribution with the MKM in the SOBP, while the discrepancy before and after the SOBP are both within 10%. Moreover, the MKM might overestimate the clinical dose at the distal end of the SOBP more than 5% because of its constant ß value, while a minimal value of ß is calculated with the MMKM at this position. Besides, the discrepancy of the averaged cell survival fraction in the SOBP calculated with the two models is more than 15% at the high dose level. The MMKM may provide a reference for the accurate calculation of the RBE value in heavy ion therapy.


Assuntos
Radioterapia com Íons Pesados , Modelos Estatísticos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Humanos , Cinética , Método de Monte Carlo , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA