Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 9(4): e94480, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736641

RESUMO

The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.


Assuntos
Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Sorghum/metabolismo , Biocombustíveis/microbiologia , Análise Custo-Benefício , Saccharomyces cerevisiae/crescimento & desenvolvimento
2.
Biotechnol Biofuels ; 6(1): 174, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24286508

RESUMO

BACKGROUND: Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. RESULTS: An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. CONCLUSIONS: A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.

3.
Bioresour Technol ; 104: 410-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133603

RESUMO

This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native ß-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous ß-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing.


Assuntos
Ascomicetos/metabolismo , Etanol/metabolismo , Componentes Aéreos da Planta/microbiologia , Xilose/metabolismo , Zea mays/microbiologia , beta-Glucosidase/metabolismo , Agricultura/economia , Ascomicetos/classificação , Metabolismo dos Carboidratos , China , Análise Custo-Benefício , Etanol/economia , Fermentação , Resíduos Industriais/economia , Resíduos Industriais/prevenção & controle , Especificidade da Espécie , Xilose/economia , Zea mays/economia , beta-Glucosidase/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA