Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Brain Mapp ; 43(12): 3646-3661, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426965

RESUMO

Behavioral decision theory argues that humans can adjust their third-party responses (e.g., punishment and compensation) to injustice by integrating unfair experiences. Typically, the mood plays an important role in such a decision-making process. However, the underlying neurocognitive bases remain largely unclear. We first employ a modified third-party justice game in which an allocator split an amount of money between oneself and a receiver. The participants can reapportion the money as observers by choosing from the following three costly options: compensate the receiver, accept the current allocation, or punish the allocator. Then, a second-party pseudo interaction is conducted where participants receive more (i.e., advantageous unfair experience) or less (i.e., disadvantageous unfair experience) than others. Finally, participants perform the third-party justice game again after unfair experiences. Here, we use functional near-infrared spectroscopy (fNIRS) to measure participants' brain activities during third-party responses to injustice. We find participants compensate more to the receiver after advantageous unfair experience, which involved enhanced positive emotion, weakened sense of unfairness, and is linked with increased activity in the right dorsolateral prefrontal cortex (rDLPFC). In contrast, participants punish more on the allocator after disadvantageous unfair experience, which might primarily stem from their negative emotional responses, strong sense of unfairness, and is associated with significantly decreased activity in the rDLPFC. Our results suggest that third-party compensation and punishment involved differential psychological and neural bases. Our findings highlight the crucial roles of second-party unfair experiences and the corresponding mood responses in third-party responses to unfairness, and unravel the intermediate neural architecture.


Assuntos
Tomada de Decisões , Punição , Afeto , Tomada de Decisões/fisiologia , Emoções , Humanos , Punição/psicologia , Justiça Social/psicologia
2.
PLoS Biol ; 19(4): e3001190, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844686

RESUMO

Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.


Assuntos
Hemípteros/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oryza/parasitologia , Peroxirredoxinas/fisiologia , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Alelos , Animais , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes de Insetos/efeitos dos fármacos , Genes Modificadores/efeitos dos fármacos , Genes Modificadores/fisiologia , Estudos de Associação Genética , Aptidão Genética/efeitos dos fármacos , Hemípteros/fisiologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Oryza/efeitos dos fármacos , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443170

RESUMO

Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world's most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest's population size. In Arizona, the program started in 2006 and decreased the pest's estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Erradicação de Doenças/métodos , Gossypium/genética , Mariposas/genética , Controle Biológico de Vetores/métodos , Animais , Animais Geneticamente Modificados , Arizona , Toxinas de Bacillus thuringiensis/metabolismo , Simulação por Computador , Erradicação de Doenças/economia , Infertilidade/genética , Inseticidas/metabolismo , México , Mariposas/crescimento & desenvolvimento , Mariposas/patogenicidade , Plantas Geneticamente Modificadas , Sudoeste dos Estados Unidos
4.
Sci Rep ; 4: 5629, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005122

RESUMO

Transgenic Bacillus thuringiensis (Bt) crops play an increasing role in pest control, and resistance management is a major issue in large-scale cultivation of Bt crops. The fitness cost of resistance in targeted pests is considered to be one of the main factors delaying resistance when using the refuge strategy. By comparing 10 resistant Helicoverpa armigera (Hubner) strains, showing various resistance levels to Bt toxin (Cry1Ac), to a susceptible strain, we showed an increasing fitness cost corresponding with increasing levels of resistance. The relationship between overall fitness cost C and the resistance ratio Rr could be described by C = 24.47/(1 + exp([1.57 - Log10Rr]/0.2)). This model predicted that the maximum overall fitness cost would be ~24% (± 5.22) in the strains with the highest resistance level. The overall fitness cost was closely linked to egg hatching rate, fecundity, emergence rate, larval survival rate, and developmental duration of adults. Among fitness components measured, fecundity was the most sensitive trait linked to the resistance selection. To integrate the results into simulation models would be valuable in evaluating how variation in fitness cost may influence the development of resistance in pest populations, thus helping to develop enhanced refuge strategies.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Lepidópteros/microbiologia , Mariposas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Animais , Toxinas de Bacillus thuringiensis , Larva/microbiologia , Toxinas Biológicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA