Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38535399

RESUMO

Microsporidiosis, which is caused by the pathogen Vairimorpha ceranae, is a prevalent disease in the honey bee (Apis mellifera) and might lead to significant adult honey bee mortality. In this study, we conducted an annual survey of the mature spore load of V. ceranae in the guts of nurse bees and forager bees in the apiary of National Chung Hsing University (NCHU) in Taiwan. The results indicated that, on average, honey bees hosted approximately 2.13 × 106 mature spore counts (MSCs)/bee in their guts throughout the entire year. The highest number of MSCs was 6.28 × 106 MSCs/bee, which occurred in April 2020, and the lowest number of MSCs was 5.08 × 105 MSCs/bee, which occurred in November 2020. Furthermore, the guts of forager bees had significantly higher (>58%) MSCs than those of nurse bees. To evaluate the potential of the probiotic to treat microsporidiosis, the lactic acid bacterium Leuconostoc mesenteroides TBE-8 was applied to honey bee colonies. A significant reduction (>53%) in MSCs following probiotic treatment was observed, indicating the potential of probiotic treatment for managing microsporidiosis. This research provided information on V. ceranae MSCs in the honey bee gut at NCHU in Taiwan and the MSCs' correlation with the annual season. Furthermore, a potential probiotic treatment for microsporidiosis was assessed for future management.

2.
Sci Rep ; 11(1): 15028, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294840

RESUMO

Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


Assuntos
Abelhas/genética , Abelhas/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus de RNA , Transcriptoma , Doenças dos Animais/genética , Doenças dos Animais/mortalidade , Doenças dos Animais/virologia , Animais , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA