Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 33(6): 3995-4006, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36571604

RESUMO

OBJECTIVES: To comprehensively assess osteoporosis in the lumbar spine, a compositional MR imaging technique is proposed to quantify proton fractions for all the water components as well as fat in lumbar vertebrae measured by a combination of a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) MRI and IDEAL-IQ. METHODS: A total of 182 participants underwent MRI, quantitative CT, and DXA. Lumbar collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), total water proton fraction (TWPF), bone mineral density (BMD), and T-score were calculated in three vertebrae (L2-L4) for each subject. The correlations of the CBWPF, FWPF, and TWPF with BMD and T-score were investigated respectively. A comprehensive diagnostic model combining all the water components and clinical characteristics was established. The performances of all the water components and the comprehensive diagnostic model to discriminate between normal, osteopenia, and osteoporosis cohorts were also evaluated using receiver operator characteristic (ROC). RESULTS: The CBWPF showed strong correlations with BMD (r = 0.85, p < 0.001) and T-score (r = 0.72, p < 0.001), while the FWPF and TWPF showed moderate correlations with BMD (r = 0.65 and 0.68, p < 0.001) and T-score (r = 0.47 and 0.49, p < 0.001). The high area under the curve values obtained from ROC analysis demonstrated that CBWPF, FWPF, and TWPF have the potential to differentiate the normal, osteopenia, and osteoporosis cohorts. At the same time, the comprehensive diagnostic model shows the best performance. CONCLUSIONS: The compositional MRI technique, which quantifies CBWPF, FWPF, and TWPF in trabecular bone, is promising in the assessment of bone quality. KEY POINTS: • Compositional MR imaging technique is able to quantify proton fractions for all the water components (i.e., collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), and total water proton fraction (TWPF)) in the human lumbar spine. • The biomarkers derived from the compositional MR imaging technique showed moderate to high correlations with bone mineral density (BMD) and T-score and showed good performance in distinguishing people with different bone mass. • The comprehensive diagnostic model incorporating CBWPF, FWPF, TWPF, and clinical characteristics showed the highest clinical diagnostic capability for the assessment of osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Humanos , Vértebras Lombares/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Prótons , Osteoporose/diagnóstico por imagem , Densidade Óssea , Imageamento por Ressonância Magnética/métodos , Água , Colágeno , Absorciometria de Fóton/métodos
2.
Front Endocrinol (Lausanne) ; 13: 801930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250862

RESUMO

AIM: Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS: A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS: The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION: The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.


Assuntos
Fraturas Ósseas , Osteoporose , Idoso , Idoso de 80 Anos ou mais , Osso Esponjoso/diagnóstico por imagem , Colágeno , Humanos , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA