Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 109: 102294, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37713999

RESUMO

BACKGROUND: Brain stroke is a leading cause of disability and death worldwide, and early diagnosis and treatment are critical to improving patient outcomes. Current stroke diagnosis methods are subjective and prone to errors, as radiologists rely on manual selection of the most important CT slice. This highlights the need for more accurate and reliable automated brain stroke diagnosis and localization methods to improve patient outcomes. PURPOSE: In this study, we aimed to enhance the vision transformer architecture for the multi-slice classification of CT scans of each patient into three categories, including Normal, Infarction, Hemorrhage, and patient-wise stroke localization, based on end-to-end vision transformer architecture. This framework can provide an automated, objective, and consistent approach to stroke diagnosis and localization, enabling personalized treatment plans based on the location and extent of the stroke. METHODS: We modified the Vision Transformer (ViT) in combination with neural network layers for the multi-slice classification of brain CT scans of each patient into normal, infarction, and hemorrhage classes. For stroke localization, we used the ViT architecture and convolutional neural network layers to detect stroke and localize it by bounding boxes for infarction and hemorrhage regions in a patient-wise manner based on multi slices. RESULTS: Our proposed framework achieved an overall accuracy of 87.51% in classifying brain CT scan slices and showed high precision in localizing the stroke patient-wise. Our results demonstrate the potential of our method for accurate and reliable stroke diagnosis and localization. CONCLUSION: Our study enhanced ViT architecture for automated stroke diagnosis and localization using brain CT scans, which could have significant implications for stroke management and treatment. The use of deep learning algorithms can provide a more objective and consistent approach to stroke diagnosis and potentially enable personalized treatment plans based on the location and extent of the stroke. Further studies are needed to validate our method on larger and more diverse datasets and to explore its clinical utility in real-world settings.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Hemorragia , Infarto
2.
Comput Med Imaging Graph ; 109: 102295, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717365

RESUMO

BACKGROUND: Medical image classification is crucial for accurate and efficient diagnosis, and deep learning frameworks have shown significant potential in this area. When a general learning deep model is directly deployed to a new dataset with heterogeneous features, the effect of domain shifts is usually ignored, which degrades the performance of deep learning models and leads to inaccurate predictions. PURPOSE: This study aims to propose a framework that utilized the cross-modality domain adaptation and accurately diagnose and classify MRI scans and domain knowledge into stable and vulnerable plaque categories by a modified Vision Transformer (ViT) model for the classification of MRI scans and transformer model for domain knowledge classification. METHODS: This study proposes a Hybrid Vision Inspired Transformer (HViT) framework that employs a convolutional layer for image pre-processing and normalization and a 3D convolutional layer to enable ViT to classify 3D images. Our proposed HViT framework introduces a slim design with a multi-branch network and channel attention, improving patch embedding extraction and information learning. Auxiliary losses target shallow features, linking them with deeper ones, enhancing information gain, and model generalization. Furthermore, replacing the MLP Head with RNN enables better backpropagation for improved performance. Moreover, we utilized a modified transformer model with LSTM positional encoding and Golve word vector to classify domain knowledge. By using ensemble learning techniques, specifically stacking ensemble learning with hard and soft prediction, we combine the predictive power of both models to address the cross-modality domain adaptation problem and improve overall performance. RESULTS: The proposed framework achieved an accuracy of 94.32% for carotid artery plaque classification into stable and vulnerable plaque by addressing the cross-modality domain adaptation problem and improving overall performance. CONCLUSION: The model was further evaluated using an independent dataset acquired from different hardware protocols. The results demonstrate that the proposed deep learning model significantly improves the generalization ability across different MRI scans acquired from different hardware protocols without requiring additional calibration data.


Assuntos
Estenose das Carótidas , Humanos , Estenose das Carótidas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Calibragem , Processamento de Imagem Assistida por Computador
3.
Comput Methods Programs Biomed ; 224: 106981, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863125

RESUMO

BACKGROUND AND OBJECTIVE: The ever-mutating COVID-19 has infected billions of people worldwide and seriously affected the stability of human society and the world economic development. Therefore, it is essential to make long-term and short-term forecasts for COVID-19. However, the pandemic situation in different countries and regions may be dominated by different virus variants, and the transmission capacity of different virus variants diversifies. Therefore, there is a need to develop a predictive model that can incorporate mutational information to make reasonable predictions about the current pandemic situation. METHODS: This paper proposes a deep learning prediction framework, VOC-DL, based on Variants Of Concern (VOC). The framework uses slope feature method to process the time series dataset containing VOC variant information, and uses VOC-LSTM, VOC-GRU and VOC-BILSTM prediction models included in the framework to predict the daily newly confirmed cases. RESULTS: We analyzed daily newly confirmed cases in Italy, South Korea, Russia, Japan and India from April 14th, 2021 to July 3rd, 2021. The experimental results show that all VOC-DL models proposed in this paper can accurately predict the pandemic trend in the medium and long term, and VOC-LSTM model has the best prediction performance, with the highest average determination coefficient R2 of 96.83% in five nations' datasets. The overall prediction has robustness. CONCLUSIONS: The experimental results show that VOC-LSTM is the best predictor for such a series of data and has higher prediction accuracy in the long run. At the same time, our VOC-DL framework combining VOC variants has reference significance for predicting other variants in the future.


Assuntos
COVID-19 , Aprendizado Profundo , COVID-19/diagnóstico , Previsões , Humanos , Índia , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA