Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Proteome Res ; 12(10): 4449-61, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007199

RESUMO

The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Porphyromonas gingivalis/metabolismo , Prevotella intermedia/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Bacteroidetes/metabolismo , Cadeias de Markov , Proteínas de Membrana/química , Dados de Sequência Molecular , Filogenia , Sinais Direcionadores de Proteínas , Homologia de Sequência de Aminoácidos
2.
PLoS One ; 7(8): e43245, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905239

RESUMO

Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.


Assuntos
Biologia Computacional/métodos , Adesinas Bacterianas/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Transporte Biológico , Chlamydiales/metabolismo , Escherichia coli/metabolismo , Fusobactérias/metabolismo , Humanos , Cadeias de Markov , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ralstonia/metabolismo , Software
3.
Methods Mol Biol ; 619: 271-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20419416

RESUMO

Protein import and export pathways are driven by protein translocases, often comprised of multiple subunits, and usually conserved across a range of organisms. Protein import into mitochondria is fundamental to eukaryotic organisms and is initiated when substrate proteins are translocated across the mitochondrial outer membrane by the TOM complex. The essential subunit of this complex is a protein called Tom40, which is probably a beta-barrel in structure and serves as the translocation pore. We describe a hidden Markov model search designed to find the Tom40 sequence in the amoeba Entamoeba histolytica. This organism has a highly reduced "mitosome", an organelle whose relationship to mitochondria has been the subject of controversy. The Tom40 sequence could not be found with BLAST-based searches, but a hidden Markov model search identified a likely candidate to form the protein import pore in the outer mitosomal membrane in E. histolytica.


Assuntos
Entamoeba histolytica/metabolismo , Cadeias de Markov , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Transporte Proteico , Homologia de Sequência de Aminoácidos
4.
PLoS Pathog ; 6(3): e1000812, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20333239

RESUMO

Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.


Assuntos
Entamoeba histolytica/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Vesículas Citoplasmáticas/metabolismo , Entamoeba histolytica/genética , Genoma de Protozoário , Cadeias de Markov , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Filogenia , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética
5.
Mol Biol Evol ; 24(5): 1149-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17329230

RESUMO

The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of approximately 10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8-Tim13(10) complex becomes essential and the Tim9-Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Chaperonas Moleculares/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Duplicação Gênica , Humanos , Cadeias de Markov , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Conformação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/fisiologia
6.
Int J Parasitol ; 36(14): 1499-514, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17011565

RESUMO

The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.


Assuntos
Leishmania major/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Divisão Celular/genética , Deleção de Genes , Genoma de Protozoário/genética , Kinetoplastida/química , Kinetoplastida/genética , Kinetoplastida/ultraestrutura , Leishmania major/química , Leishmania major/ultraestrutura , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Estágios do Ciclo de Vida , Cadeias de Markov , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura/métodos , Mitocôndrias/química , Mitocôndrias/genética , Membranas Mitocondriais/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma/química , Trypanosoma/genética , Trypanosoma/ultraestrutura , Virulência/genética
7.
Proteins ; 64(4): 1024-45, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16783790

RESUMO

Transthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species. Here, we identified five motifs defining TLPs and three motifs defining both TTRs and TLPs. These motifs were mapped onto structurally conserved and functionally important regions of TTRs. These motifs were used to build hidden Markov models for accurate identification of TLPs in other organisms. TLPs were divided into three main groups based on their N-terminal regions. Most TLPs are cytosolic, but in plants and slime mold, we predict they are peroxisomal. We verified that the TLPs from enterobacteria were periplasmic. We demonstrated that TLP genes are expressed in a bacterium (E. coli), an invertebrate animal (C. elegans), and a plant (A. thaliana). These TLPs have similar subunit molecular weights to TTRs, are tetramers, and are predicted to have similar three-dimensional (3D) structures to TTRs, but do not bind thyroid hormones or similar ligands. We suggest that like TTRs, the N-terminal and C-terminal regions of TLPs are integral in defining the function of TLPs in nonvertebrate species and that the TLP gene duplicated in primitive vertebrates to produce the TTR gene. TLP/TTR has retained its overall structure, but changed function and localization during evolution in bacteria, invertebrates, plants, and vertebrates.


Assuntos
Evolução Molecular , Pré-Albumina/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Escherichia coli/genética , Humanos , Cadeias de Markov , Proteínas de Membrana/genética , Pré-Albumina/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
J Mol Biol ; 347(1): 81-93, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15733919

RESUMO

Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.


Assuntos
Conformação Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Sítios de Ligação , Evolução Molecular , Humanos , Cadeias de Markov , Proteínas de Transporte da Membrana Mitocondrial , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/classificação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA