RESUMO
Importance: Sarcopenia is an established prognostic factor in patients with head and neck squamous cell carcinoma (HNSCC); the quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical skeletal muscle segmentation and cross-sectional area. However, manual muscle segmentation is labor intensive, prone to interobserver variability, and impractical for large-scale clinical use. Objective: To develop and externally validate a fully automated image-based deep learning platform for cervical vertebral muscle segmentation and SMI calculation and evaluate associations with survival and treatment toxicity outcomes. Design, Setting, and Participants: For this prognostic study, a model development data set was curated from publicly available and deidentified data from patients with HNSCC treated at MD Anderson Cancer Center between January 1, 2003, and December 31, 2013. A total of 899 patients undergoing primary radiation for HNSCC with abdominal computed tomography scans and complete clinical information were selected. An external validation data set was retrospectively collected from patients undergoing primary radiation therapy between January 1, 1996, and December 31, 2013, at Brigham and Women's Hospital. The data analysis was performed between May 1, 2022, and March 31, 2023. Exposure: C3 vertebral skeletal muscle segmentation during radiation therapy for HNSCC. Main Outcomes and Measures: Overall survival and treatment toxicity outcomes of HNSCC. Results: The total patient cohort comprised 899 patients with HNSCC (median [range] age, 58 [24-90] years; 140 female [15.6%] and 755 male [84.0%]). Dice similarity coefficients for the validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI, 0.90-0.91) and 0.90 (95% CI, 0.89-0.91), respectively, with a mean 96.2% acceptable rate between 2 reviewers on external clinical testing (n = 377). Estimated cross-sectional area and SMI values were associated with manually annotated values (Pearson r = 0.99; P < .001) across data sets. On multivariable Cox proportional hazards regression, SMI-derived sarcopenia was associated with worse overall survival (hazard ratio, 2.05; 95% CI, 1.04-4.04; P = .04) and longer feeding tube duration (median [range], 162 [6-1477] vs 134 [15-1255] days; hazard ratio, 0.66; 95% CI, 0.48-0.89; P = .006) than no sarcopenia. Conclusions and Relevance: This prognostic study's findings show external validation of a fully automated deep learning pipeline to accurately measure sarcopenia in HNSCC and an association with important disease outcomes. The pipeline could enable the integration of sarcopenia assessment into clinical decision making for individuals with HNSCC.
Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Sarcopenia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Estudos Retrospectivos , Sarcopenia/diagnóstico por imagem , Sarcopenia/complicações , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/diagnóstico por imagemRESUMO
The prevalence of developmental prosopagnosia (DP), lifelong face recognition deficits, is widely reported to be 2-2.5%. However, DP has been diagnosed in different ways across studies, resulting in differing prevalence rates. In the current investigation, we estimated the range of DP prevalence by administering well-validated objective and subjective face recognition measures to an unselected web-based sample of 3116 18-55 year-olds and applying DP diagnostic cutoffs from the last 14 years. We found estimated prevalence rates ranged from .64-5.42% when using a z-score approach and .13-2.95% when using a percentile approach, with the most commonly used cutoffs by researchers having a prevalence rate of .93% (z-score, .45% when using percentiles). We next used multiple cluster analyses to examine whether there was a natural grouping of poorer face recognizers but failed to find consistent grouping beyond those with generally above versus below average face recognition. Lastly, we investigated whether DP studies with more relaxed diagnostic cutoffs were associated with better performance on the Cambridge Face Perception Test. In a sample of 43 studies, there was a weak nonsignificant association between greater diagnostic strictness and better DP face perception accuracy (Kendall's tau-b correlation, τb =.18 z-score; τb = .11 percentiles). Together, these results suggest that researchers have used more conservative DP diagnostic cutoffs than the widely reported 2-2.5% prevalence. We discuss the strengths and weaknesses of using more inclusive cutoffs, such as identifying mild and major forms of DP based on DSM-5.
Assuntos
Reconhecimento Facial , Prosopagnosia , Humanos , Prosopagnosia/diagnóstico , Prosopagnosia/epidemiologia , Prosopagnosia/complicações , Prevalência , Reconhecimento Psicológico , Análise por Conglomerados , Reconhecimento Visual de ModelosRESUMO
Purpose: Sarcopenia is an established prognostic factor in patients diagnosed with head and neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical neck skeletal muscle (SM) segmentation and cross-sectional area. However, manual SM segmentation is labor-intensive, prone to inter-observer variability, and impractical for large-scale clinical use. To overcome this challenge, we have developed and externally validated a fully-automated image-based deep learning (DL) platform for cervical vertebral SM segmentation and SMI calculation, and evaluated the relevance of this with survival and toxicity outcomes. Materials and Methods: 899 patients diagnosed as having HNSCC with CT scans from multiple institutes were included, with 335 cases utilized for training, 96 for validation, 48 for internal testing and 393 for external testing. Ground truth single-slice segmentations of SM at the C3 vertebra level were manually generated by experienced radiation oncologists. To develop an efficient method of segmenting the SM, a multi-stage DL pipeline was implemented, consisting of a 2D convolutional neural network (CNN) to select the middle slice of C3 section and a 2D U-Net to segment SM areas. The model performance was evaluated using the Dice Similarity Coefficient (DSC) as the primary metric for the internal test set, and for the external test set the quality of automated segmentation was assessed manually by two experienced radiation oncologists. The L3 skeletal muscle area (SMA) and SMI were then calculated from the C3 cross sectional area (CSA) of the auto-segmented SM. Finally, established SMI cut-offs were used to perform further analyses to assess the correlation with survival and toxicity endpoints in the external institution with univariable and multivariable Cox regression. Results: DSCs for validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI: 0.90 - 0.91) and 0.90 (95% CI: 0.89 - 0.91), respectively. The predicted CSA is highly correlated with the ground-truth CSA in both validation (r = 0.99, p < 0.0001) and test sets (r = 0.96, p < 0.0001). In the external test set (n = 377), 96.2% of the SM segmentations were deemed acceptable by consensus expert review. Predicted SMA and SMI values were highly correlated with the ground-truth values, with Pearson r ß 0.99 (p < 0.0001) for both the female and male patients in all datasets. Sarcopenia was associated with worse OS (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04) and longer PEG tube duration (median 162 days vs. 134 days, HR 1.51 [95% CI 1.12 - 2.08], p = 0.006 in multivariate analysis. Conclusion: We developed and externally validated a fully-automated platform that strongly correlates with imaging-assessed sarcopenia in patients with H&N cancer that correlates with survival and toxicity outcomes. This study constitutes a significant stride towards the integration of sarcopenia assessment into decision-making for individuals diagnosed with HNSCC. SUMMARY STATEMENT: In this study, we developed and externally validated a deep learning model to investigate the impact of sarcopenia, defined as the loss of skeletal muscle mass, on patients with head and neck squamous cell carcinoma (HNSCC) undergoing radiotherapy. We demonstrated an efficient, fullyautomated deep learning pipeline that can accurately segment C3 skeletal muscle area, calculate cross-sectional area, and derive a skeletal muscle index to diagnose sarcopenia from a standard of care CT scan. In multi-institutional data, we found that pre-treatment sarcopenia was associated with significantly reduced overall survival and an increased risk of adverse events. Given the increased vulnerability of patients with HNSCC, the assessment of sarcopenia prior to radiotherapy may aid in informed treatment decision-making and serve as a predictive marker for the necessity of early supportive measures.
RESUMO
Are gender differences in face recognition influenced by familiarity and socio-cultural factors? Previous studies have reported gender differences in processing unfamiliar faces, consistently finding a female advantage and a female own-gender bias. However, researchers have recently highlighted that unfamiliar faces are processed less efficiently than familiar faces, which have more robust, invariant representations. To-date, no study has examined whether gender differences exist for familiar face recognition. The current study addressed this by using a famous faces task in a large, web-based sample of > 2000 participants across different countries. We also sought to examine if differences varied by socio-cultural gender equality within countries. When examining raw accuracy as well when controlling for fame, the results demonstrated that there were no participant gender differences in overall famous face accuracy, in contrast to studies of unfamiliar faces. There was also a consistent own-gender bias in male but not female participants. In countries with low gender equality, including the USA, females showed significantly better recognition of famous female faces compared to male participants, whereas this difference was abolished in high gender equality countries. Together, this suggests that gender differences in recognizing unfamiliar faces can be attenuated when there is enough face learning and that sociocultural gender equality can drive gender differences in familiar face recognition.