Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 111(2): 382-391, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053824

RESUMO

Calcium sulfate, an injectable and biodegradable bone-void filler, is widely used in orthopedic surgery. Based on clinical experience, bone-defect substitutes can also serve as vehicles for the delivery of drugs, for example, antibiotics, to prevent or to treat infections such as osteomyelitis. However, antibiotic additions change the characteristics of calcium sulfate cement. Moreover, high-dose antibiotics may also be toxic to bony tissues. Accordingly, cefazolin at varying weight ratios was added to calcium sulfate samples and characterized in vitro. The results revealed that cefazolin changed the hydration reaction and prolonged the initial setting times of calcium sulfate bone cement. For the crystalline structure identification, X-ray diffractometer revealed that cefazolin additive resulted in the decrease of peak intensity corresponding to calcium sulfate dihydrate which implying incomplete phase conversion of calcium sulfate hemihydrate. In addition, scanning electron microscope inspection exhibited cefazolin changed the morphology and size of the crystals greatly. A relatively higher amount of cefazolin additive caused a faster degradation and a lower compressive strength of calcium sulfate compared with those of uploaded samples. Furthermore, the extract of cefazolin-impregnated calcium sulfate impaired cell viability, and caused the death of osteoblast-like cells. The results of this study revealed that the cefazolin additives prolonged setting time, impaired mechanical strength, accelerated degradation, and caused cytotoxicity of the calcium sulfate bone-void filler. The aforementioned concerns should be considered during intra-operative applications.


Assuntos
Substitutos Ósseos , Sulfato de Cálcio , Sulfato de Cálcio/farmacologia , Sulfato de Cálcio/química , Cefazolina/farmacologia , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Força Compressiva , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Excipientes
2.
Front Bioeng Biotechnol ; 10: 887269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646883

RESUMO

This study aimed to use the k-nearest neighbor (kNN) algorithm, which combines gait stability and symmetry derived from a normalized cross-correlation (NCC) analysis of acceleration signals from the bilateral ankles of older adults, to assess fall risk. Fifteen non-fallers and 12 recurrent fallers without clinically significant musculoskeletal and neurological diseases participated in the study. Sex, body mass index, previous falls, and the results of the 10 m walking test (10 MWT) were recorded. The acceleration of the five gait cycles from the midsection of each 10 MWT was used to calculate the unilateral NCC coefficients for gait stability and bilateral NCC coefficients for gait symmetry, and then kNN was applied for classifying non-fallers and recurrent fallers. The duration of the 10 MWT was longer among recurrent fallers than it was among non-fallers (p < 0.05). Since the gait signals were acquired from tri-axial accelerometry, the kNN F1 scores with the x-axis components were 92% for non-fallers and 89% for recurrent fallers, and the root sum of squares (RSS) of the signals was 95% for non-fallers and 94% for recurrent fallers. The kNN classification on gait stability and symmetry revealed good accuracy in terms of distinguishing non-fallers and recurrent fallers. Specifically, it was concluded that the RSS-based NCC coefficients can serve as effective gait features to assess the risk of falls.

3.
J Vis Exp ; (159)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449705

RESUMO

Pedicle screw implantation has excellent treatment effects and is often used by surgeons in spinal fusion surgery. However, due to the complexity of human body anatomy, this surgical procedure is difficult and challenging, especially in minimally invasive surgery or patients with congenital anomalies and kyphoscoliosis deformity. In addition to the abovementioned factors, the surgical experience and technique of the surgeon also affect the recovery rates and complications of the patients after the surgical operation. Therefore, accurately performing pedicle screw implantation has is a constant topic of common concern for surgeons and patients. In recent years, with the technological development, robot-assisted navigation systems have gradually become adopted. These robot-assisted navigation systems provide surgeons with complete preoperative planning before surgery. The system provides 3D reconstructed images of each vertebra, allowing surgeons to understand the patient's physiological characteristics more quickly. It also provides 2D images of sagittal, coronal, axial and oblique planes so that surgeons can accurately perform pedicle screw placement plan. Previous studies have demonstrated the effectiveness of robot-assisted navigation systems for pedicle screw implantation procedures, including accuracy and safety assessments. This step-by-step protocol aims to outline a standardized surgical technique note for robotic-assisted pedicle screw placement.


Assuntos
Parafusos Pediculares , Procedimentos Cirúrgicos Robóticos , Coluna Vertebral/cirurgia , Coleta de Dados , Humanos , Imageamento Tridimensional , Parafusos Pediculares/efeitos adversos , Procedimentos Cirúrgicos Robóticos/métodos , Software , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Interface Usuário-Computador
4.
PLoS One ; 12(11): e0188034, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145437

RESUMO

Interbody fusion with posterior instrumentation is a common method for treating lumbar degenerative disc diseases. However, the high rigidity of the fusion construct may produce abnormal stresses at the adjacent segment and lead to adjacent segment degeneration (ASD). As such, biodegradable implants are becoming more popular for use in orthopaedic surgery. These implants offer sufficient stability for fusion but at a reduced stiffness. Tailored to degrade over a specific timeframe, biodegradable implants could potentially mitigate the drawbacks of conventional stiff constructs and reduce the loading on adjacent segments. Six finite element models were developed in this study to simulate a spine with and without fixators. The spinal fixators used both titanium rods and biodegradable rods. The models were subjected to axial loading and pure moments. The range of motion (ROM), disc stresses, and contact forces of facet joints at adjacent segments were recorded. A 3-point bending test was performed on the biodegradable rods and a dynamic bending test was performed on the spinal fixators according to ASTM F1717-11a. The finite element simulation showed that lumbar spinal fusion using biodegradable implants had a similar ROM at the fusion level as at adjacent levels. As the rods degraded over time, this produced a decrease in the contact force at adjacent facet joints, less stress in the adjacent disc and greater loading on the anterior bone graft region. The mechanical tests showed the initial average fatigue strength of the biodegradable rods was 145 N, but this decreased to 115N and 55N after 6 months and 12 months of soaking in solution. Also, both the spinal fixator with biodegradable rods and with titanium rods was strong enough to withstand 5,000,000 dynamic compression cycles under a 145 N axial load. The results of this study demonstrated that biodegradable rods may present more favourable clinical outcomes for lumbar fusion. These polymer rods could not only provide sufficient initial stability, but the loss in rigidity of the fixation construct over time gradually transfers loading to adjacent segments.


Assuntos
Materiais Biocompatíveis , Fusão Vertebral/instrumentação , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Técnicas In Vitro , Amplitude de Movimento Articular , Fusão Vertebral/métodos
5.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 599-606, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770932

RESUMO

Chitosan nanoparticles modified with 10 and 30% urocanic acid (CUA) via carbodiimide crosslinking were examined for an efficient gene delivery carrier. The CUA gene carrier was characterized by FTIR, TEM, SEM and the in vitro transfection efficiency CUA polyplex was tested with HeLa and 3T3 cells. The loading efficiency of CUA complexes with DNA was assessed at different N/P ratio of 1, 2, 4, 6, 8, and 10. The DNA loading efficiency was found be to >85% for chitosan, CUA10 and CUA30% and the DNA protection ability of CUA10 and CUA30 nanoparticle complexes was confirmed upon incubation with NheI and HindIII. The cell toxicity and cell viability results have supported the non-toxic nature of CUA10 and CUA30 nanoparticles. In vitro transfection efficiency of CUA10 and CUA30 polyplex was tested for EGFP expression in 3T3 and HeLa cells and a relative maximum % transfection of about 10% was confirmed by CUA10 and CUA30 after 96h transfection. The feasibility and biocompatibility of CUA gene carrier in transgenic chickens was also demonstrated. The in vitro transfection and in vivo embryonic viability studies further confirmed the CUA as promising gene carrier because of the improved biocompatibility and DNA protection ability.


Assuntos
Quitosana/química , Técnicas de Transferência de Genes , Ácido Urocânico/química , Células 3T3 , Animais , Animais Geneticamente Modificados , Morte Celular , Sobrevivência Celular , Embrião de Galinha , DNA/metabolismo , Endonucleases/metabolismo , Células HeLa , Humanos , Camundongos , Nanopartículas/química , Ninidrina/química , Tamanho da Partícula , Plasmídeos/metabolismo , Mapeamento por Restrição , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA