Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
2.
Appl Environ Microbiol ; 75(5): 1279-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19114529

RESUMO

DNA barcoding is a diagnostic technique for species identification using a short, standardized DNA. An effective DNA barcoding marker would be very helpful for unraveling the poorly understood species diversity of dinoflagellates in the natural environment. In this study, the potential utility for DNA barcoding of mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob) was assessed. Among several primer sets examined, the one amplifying a 385-bp cob fragment was most effective for dinoflagellates. This short cob fragment is easy to sequence and yet possess reasonable taxon resolution. While the lack of a uniform gap between interspecific and intraspecific distances poses difficulties in establishing a phylum-wide species-discriminating distance threshold, the variability of cob allows recognition of species within particular lineages. The potential of this cob fragment as a dinoflagellate species marker was further tested by applying it to an analysis of the dinoflagellate assemblages in Long Island Sound (LIS) and Mirror Lake in Connecticut. In LIS, a highly diverse assemblage of dinoflagellates was detected. Some taxa can be identified to the species and some to the genus level, including a taxon distinctly related to the bipolar species Polarella glacialis, and the large number of others cannot be clearly identified, due to the inadequate database. In Mirror Lake, a Ceratium species and an unresolved taxon were detected, exhibiting a temporal transition from one to the other. We demonstrate that this 385-bp cob fragment is promising for lineage-wise dinoflagellate species identification, given an adequate database.


Assuntos
Biodiversidade , Citocromos b/genética , Dinoflagellida/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Microbiologia Ambiental , Proteínas Mitocondriais/genética , Animais , Primers do DNA/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA