Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 754401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299968

RESUMO

Introduction: Type 1 diabetes mellitus (T1DM) is characterized by autoimmune destruction of pancreatic ß cells. Previous study has discovered that probiotic strains residing in the gut play essential roles in host immune regulation. However, few clinical results demonstrated probiotic would actually benefit in attenuating glycated hemoglobin (HbA1c) along with inflammatory cytokine levels of the T1DM patients and analyzed their gut microbiota profile at the same time. In this clinical trial, we evaluated the therapeutic efficacy of probiotics on HbA1c along with inflammatory cytokine levels of T1DM patients to determine an alternative administration mode for T1DM medication. The probiotics changed T1DM gut microbiota profile will be measured by next-generation sequencing (NGS). Research Design and Methods: A randomized, double-blind, placebo-controlled trial was performed at China Medical University Hospital. T1DM patients between 6 and 18 years of age were enrolled. 27 patients were administered regular insulin therapy plus capsules containing probiotic strains Lactobacillus salivarius subsp. salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 daily for 6 months, and 29 patients were administered insulin therapy without extra probiotic supplement as placebo group. The variations of fasting blood glucose and HbA1c in these patients were analyzed. In addition, serum levels of inflammatory cytokines and anti-inflammatory cytokine were assessed using enzyme-linked immunosorbent assay. Patients' stool microbiota were all subjects to NGS analysis. Results: NGS data showed elevated populations of Bifidobacterium animalis, Akkermansia muciniphila and Lactobacillus salivarius in the gut of patients with T1DM who were taking probiotics. Patients with T1DM who were administered probiotics showed significantly reduced fasting blood glucose levels compared with the before-intervention levels. The HbA1c levels of the patients also improved after administration of probiotics. The concentrations of IL-8, IL-17, MIP-1ß, RANTES, and TNF-α were significantly reduced and were associated with an increased TGF-ß1 expression after probiotic intervention. The persistence effect of glycemic control and immunomodulation were observed even 3 months after discontinuation of the probiotics. Conclusions: Here, we found that conventional insulin therapy plus probiotics supplementation attenuated T1DM symptoms than receiving insulin treatment only. Probiotics supplementation with insulin treatment changed gut microbiota and revealed better outcome in stabilizing glycemic levels and reducing HbA1c levels in patients with T1DM through beneficial regulation of immune cytokines. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03880760.


Assuntos
Bifidobacterium animalis , Diabetes Mellitus Tipo 1 , Ligilactobacillus salivarius , Probióticos , Glicemia , Citocinas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas , Humanos , Insulina , Probióticos/uso terapêutico
2.
PLoS One ; 16(6): e0251646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166387

RESUMO

Probiotics are health beneficial bacterial populations colonizing the human gut and skin. Probiotics are believed to be involved in immune system regulation, gut microbiota stabilization, prevention of infectious diseases, and adjustments of host metabolic activities. Probiotics such as Lactobacillus and Bifidobacterium affect glycemic levels, blood lipids, and protein metabolism. However, the interactions between probiotics and metabolic diseases as well as the underlying mechanisms remain unclear. We used streptozotocin (STZ)-induced diabetic animal models to study the effect of ProbiogluTM, a multi-strain probiotic supplement including Lactobaccilus salivarius subsp. salicinius AP-32, L. johnsonii MH-68, L. reuteri GL-104, and Bifidobacterium animalis subsp. lactis CP-9, on the regulation of physiochemical parameters related to type-2 diabetes. Experimental rats were randomly assigned into five groups, control group, streptozotocin (STZ)-treated rats (STZ group), STZ + 1× ProbiogluTM group, STZ + 5× ProbiogluTM group, and STZ + 10× ProbiogluTM group, and physiological data were measured at weeks 0, 2, 4, 6, and 8. Our results indicate that supplementation with ProbiogluTM significantly improved glucose tolerance, glycemic levels, insulin levels, and insulin resistance (HOMA-IR). Furthermore, we observed reduction in urea and blood lipid levels, including low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (TC). ProbiogluTM administration increased the ß-cell mass in STZ-induced diabetic animal models, whereas it reduced the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1ß. In addition, the enhancement of oxidative stress biomarkers and superoxide dismutase (SOD) activities was associated with a decrease in malondialdehyde (MDA) levels. We conclude that ProbiogluTM attenuates STZ-induced type-2 diabetes by protecting ß-cells, stabilizing glycemic levels, and reducing inflammation. Among all probiotic treating groups, the 10×ProbiogluTM treatment revealed the best results. However, these experimental results still need to be validated by different animal models of type-2 diabetes and human clinical trials in the future.


Assuntos
Biomarcadores/metabolismo , Morte Celular , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Inflamação/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA