Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 5: 404-420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899014

RESUMO

Goal: Augment a small, imbalanced, wound dataset by using semi-supervised learning with a secondary dataset. Then utilize the augmented wound dataset for deep learning-based wound assessment. Methods: The clinically-validated Photographic Wound Assessment Tool (PWAT) scores eight wound attributes: Size, Depth, Necrotic Tissue Type, Necrotic Tissue Amount, Granulation Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin Viability to comprehensively assess chronic wound images. A small corpus of 1639 wound images labeled with ground truth PWAT scores was used as reference. A Semi-Supervised learning and Progressive Multi-Granularity training mechanism were used to leverage a secondary corpus of 9870 unlabeled wound images. Wound scoring utilized the EfficientNet Convolutional Neural Network on the augmented wound corpus. Results: Our proposed Semi-Supervised PMG EfficientNet (SS-PMG-EfficientNet) approach estimated all 8 PWAT sub-scores with classification accuracies and F1 scores of about 90% on average, and outperformed a comprehensive list of baseline models and had a 7% improvement over the prior state-of-the-art (without data augmentation). We also demonstrate that synthetic wound image generation using Generative Adversarial Networks (GANs) did not improve wound assessment. Conclusions: Semi-supervised learning on unlabeled wound images in a secondary dataset achieved impressive performance for deep learning-based wound grading.

2.
J Clin Neurosci ; 113: 121-125, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37262981

RESUMO

BACKGROUND: Diagnosing and treating acute ischemic stroke patients within a narrow timeframe is challenging. Time needed to access the occluded vessel and initiate thrombectomy is dictated by the availability of information regarding vascular anatomy and trajectory. Absence of such information potentially impacts device selection, procedure success, and stroke outcomes. While the cervical vessels allow neurointerventionalists to navigate devices to the occlusion site, procedures are often encumbered due to tortuous pathways. The purpose of this retrospective study was to determine how neurointerventionalists consider the physical nature of carotid segments when evaluating a procedure's difficulty. METHODS: Seven neurointerventionalists reviewed 3D reconstructions of CT angiograms of left and right carotid arteries from 49 subjects and rated the perceived procedural difficulty on a three-point scale (easy, medium, difficult) to reach the targeted M1. Twenty-two vessel metrics were quantified by dividing the carotids into 5 segments and measuring the radius of curvature, tortuosity, vessel radius, and vessel length of each segment. RESULTS: The tortuosity and length of the arch-cervical and cervical regions significantly impacted difficulty ratings. Additionally, two-way interaction between the radius of curvature and tortuosity on the arch-cervical region was significant (p < 0.0001) wherein, for example, at a given arch-cervical tortuosity, an increased radius of curvature reduced the perceived case difficulty. CONCLUSIONS: Examining the vessel metrics and providing detailed vascular data tailored to patient characteristics may result in better procedure preparation, facilitate faster vessel access time, and improve thrombectomy outcomes. Additionally, documenting these correlations can enhance device design to ensure they suitably function under various vessel conditions.


Assuntos
Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/cirurgia , Estudos Retrospectivos , Imageamento Tridimensional , Trombectomia/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Resultado do Tratamento , Procedimentos Endovasculares/métodos
3.
Phys Med Biol ; 68(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36808915

RESUMO

Objective.Monte-Carlo simulation studies have been essential for advancing various developments in single photon emission computed tomography (SPECT) imaging, such as system design and accurate image reconstruction. Among the simulation software available, Geant4 application for tomographic emission (GATE) is one of the most used simulation toolkits in nuclear medicine, which allows building systems and attenuation phantom geometries based on the combination of idealized volumes. However, these idealized volumes are inadequate for modeling free-form shape components of such geometries. Recent GATE versions alleviate these major limitations by allowing users to import triangulated surface meshes.Approach.In this study, we describe our mesh-based simulations of a next-generation multi-pinhole SPECT system dedicated to clinical brain imaging, called AdaptiSPECT-C. To simulate realistic imaging data, we incorporated in our simulation the XCAT phantom, which provides an advanced anatomical description of the human body. An additional challenge with the AdaptiSPECT-C geometry is that the default voxelized XCAT attenuation phantom was not usable in our simulation due to intersection of objects of dissimilar materials caused by overlap of the air containing regions of the XCAT beyond the surface of the phantom and the components of the imaging system.Main results.We validated our mesh-based modeling against the one constructed by idealized volumes for a simplified single vertex configuration of AdaptiSPECT-C through simulated projection data of123I-activity distributions. We resolved the overlap conflict by creating and incorporating a mesh-based attenuation phantom following a volume hierarchy. We then evaluated our reconstructions with attenuation and scatter correction for projections obtained from simulation consisting of mesh-based modeling of the system and the attenuation phantom for brain imaging. Our approach demonstrated similar performance as the reference scheme simulated in air for uniform and clinical-like123I-IMP brain perfusion source distributions.Significance.This work enables the simulation of complex SPECT acquisitions and reconstructions for emulating realistic imaging data close to those of actual patients.


Assuntos
Software , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Reprodutibilidade dos Testes , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Imagens de Fantasmas , Método de Monte Carlo
4.
IEEE Open J Eng Med Biol ; 2: 224-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532712

RESUMO

GOAL: Chronic wounds affect 6.5 million Americans. Wound assessment via algorithmic analysis of smartphone images has emerged as a viable option for remote assessment. METHODS: We comprehensively score wounds based on the clinically-validated Photographic Wound Assessment Tool (PWAT), which comprehensively assesses clinically important ranges of eight wound attributes: Size, Depth, Necrotic Tissue Type, Necrotic Tissue Amount, Granulation Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin Viability. We proposed a DenseNet Convolutional Neural Network (CNN) framework with patch-based context-preserving attention to assess the 8 PWAT attributes of four wound types: diabetic ulcers, pressure ulcers, vascular ulcers and surgical wounds. RESULTS: In an evaluation on our dataset of 1639 wound images, our model estimated all 8 PWAT sub-scores with classification accuracies and F1 scores of over 80%. CONCLUSIONS: Our work is the first intelligent system that autonomously grades wounds comprehensively based on criteria in the PWAT rubric, alleviating the significant burden that manual wound grading imposes on wound care nurses.

5.
IEEE Access ; 7: 179151-179162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33777590

RESUMO

Diabetes mellitus is a serious chronic disease that affects millions of people worldwide. In patients with diabetes, ulcers occur frequently and heal slowly. Grading and staging of diabetic ulcers is the first step of effective treatment and wound depth and granulation tissue amount are two important indicators of wound healing progress. However, wound depths and granulation tissue amount of different severities can visually appear quite similar, making accurate machine learning classification challenging. In this paper, we innovatively adopted the fine-grained classification idea for diabetic wound grading by using a Bilinear CNN (Bi-CNN) architecture to deal with highly similar images of five grades. Wound area extraction, sharpening, resizing and augmentation were used to pre-process images before being input to the Bi-CNN. Innovative modifications of the generic Bi-CNN network architecture are explored to improve its performance. Our research generated a valuable wound dataset. In collaboration with wound experts from University of Massachusetts Medical School, we collected a diabetic wound dataset of 1639 images and annotated them with wound depth and granulation tissue grades as labels for classification. Deep learning experiments were conducted using holdout validation on this diabetic wound dataset. Comparisons with widely used CNN classification architectures demonstrated that our Bi-CNN fine-grained classification approach outperformed prior work for the task of grading diabetic wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA