Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230109, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705188

RESUMO

Aquatic insects are a major indicator used to assess ecological condition in freshwater environments. However, current methods to collect and identify aquatic insects require advanced taxonomic expertise and rely on invasive techniques that lack spatio-temporal replication. Passive acoustic monitoring (PAM) is emerging as a non-invasive complementary sampling method allowing broad spatio-temporal and taxonomic coverage. The application of PAM in freshwater ecosystems has already proved useful, revealing unexpected acoustic diversity produced by fishes, amphibians, submerged aquatic plants, and aquatic insects. However, the identity of species producing sounds remains largely unknown. Among them, aquatic insects appear to be the major contributor to freshwater soundscapes. Here, we estimate the potential number of soniferous aquatic insects worldwide using data from the Global Biodiversity Information Facility. We found that four aquatic insect orders produce sounds totalling over 7000 species. This number is probably underestimated owing to poor knowledge of aquatic insects bioacoustics. We then assess the value of sound producing aquatic insects to evaluate ecological condition and find that they might be useful despite having similar responses in pristine and degraded environments in some cases. Both expert and automated identifications will be necessary to build international reference libraries and to conduct acoustic bioassessment in freshwaters. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Acústica , Biodiversidade , Água Doce , Insetos , Animais , Insetos/fisiologia , Organismos Aquáticos/fisiologia , Monitoramento Ambiental/métodos
2.
J Environ Manage ; 320: 115915, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952567

RESUMO

Conservation and restoration have long been regarded as two separate management avenues to maintain or enhance ecosystem functioning. Despite the commonalities in goals, restoration is generally considered a lower priority than conservation due to its generally greater cost, uncertainties in multiple trajectories and deals with already degraded habitats. However, when resources and opportunities for meeting conservation needs are limited, restoration could be an imperative avenue to provide additional benefits from conservation. The priority of conservation and restoration should be integrated based on an identical framework cost effectively to obtain the maximum ecological benefits with minimal costs. We propose a methodological framework to integrate conservation and restoration based on theories of Systematic Conservation Planning, which could identify best integrated conservation and restoration pattern in a cost-effective way on the basis of the provisions of multiple ecosystem services (i.e., carbon storage, water yield, soil retention and habitat quality). The trade-offs among four ecosystem services are assessed with an each of 10% increment in the target levels of ecosystem services. We demonstrated our approach at a regional scale, in the Dongting Lake Area, China. Our results showed that conservation is prioritized in a higher proportion of the study area when the targets are low. When the target level became higher, restoration gained more importance with growing area. This highlights that restoration pattern is indispensable when target setting become high and the integrated conservation and restoration planning is more cost efficient than that of conservation alone. Improving the carbon storage and soil retention would also contribute greatly to an increase in other ecosystems, but increasing the water yield and habitat quality would not guarantee an improvement for others. Integrated conservation and restoration planning will facilitate refine target achievement of conservation and restoration recommendations, by the trade-offs between conservation and restoration, and among different ecosystem services, our prioritization framework provides a useful insight in implementing the integrated planning, which can improve the efficiency in increasing ecosystem services compared to use either conservation or restoration ways.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Carbono , China , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Solo , Água
3.
PLoS One ; 10(5): e0128027, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020794

RESUMO

Planning for the remediation of multiple threats is crucial to ensure the long term persistence of biodiversity. Limited conservation budgets require prioritizing which management actions to implement and where. Systematic conservation planning traditionally assumes that all the threats in priority sites are abated (fixed prioritization approach). However, abating only the threats affecting the species of conservation concerns may be more cost-effective. This requires prioritizing individual actions independently within the same site (independent prioritization approach), which has received limited attention so far. We developed an action prioritization algorithm that prioritizes multiple alternative actions within the same site. We used simulated annealing to find the combination of actions that remediate threats to species at the minimum cost. Our algorithm also accounts for the importance of selecting actions in sites connected through the river network (i.e., connectivity). We applied our algorithm to prioritize actions to address threats to freshwater fish species in the Mitchell River catchment, northern Australia. We compared how the efficiency of the independent and fixed prioritization approach varied as the importance of connectivity increased. Our independent prioritization approach delivered more efficient solutions than the fixed prioritization approach, particularly when the importance of achieving connectivity was high. By spatially prioritizing the specific actions necessary to remediate the threats affecting the target species, our approach can aid cost-effective habitat restoration and land-use planning. It is also particularly suited to solving resource allocation problems, where consideration of spatial design is important, such as prioritizing conservation efforts for highly mobile species, species facing climate change-driven range shifts, or minimizing the risk of threats spreading across different realms.


Assuntos
Algoritmos , Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/economia , Espécies em Perigo de Extinção , Peixes/fisiologia , Animais , Austrália , Mudança Climática , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Tomada de Decisões , Rios
4.
J Environ Manage ; 132: 296-303, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24325822

RESUMO

River rehabilitation aims to protect biodiversity or restore key ecosystem services but the success rate is often low. This is seldom because of insufficient funding for rehabilitation works but because trade-offs between costs and ecological benefits of management actions are rarely incorporated in the planning, and because monitoring is often inadequate for managers to learn by doing. In this study, we demonstrate a new approach to plan cost-effective river rehabilitation at large scales. The framework is based on the use of cost functions (relationship between costs of rehabilitation and the expected ecological benefit) to optimize the spatial allocation of rehabilitation actions needed to achieve given rehabilitation goals (in our case established by the Swiss water act). To demonstrate the approach with a simple example, we link costs of the three types of management actions that are most commonly used in Switzerland (culvert removal, widening of one riverside buffer and widening of both riversides) to the improvement in riparian zone quality. We then use Marxan, a widely applied conservation planning software, to identify priority areas to implement these rehabilitation measures in two neighbouring Swiss cantons (Aargau, AG and Zürich, ZH). The best rehabilitation plans identified for the two cantons met all the targets (i.e. restoring different types of morphological deficits with different actions) rehabilitating 80,786 m (AG) and 106,036 m (ZH) of the river network at a total cost of 106.1 Million CHF (AG) and 129.3 Million CH (ZH). The best rehabilitation plan for the canton of AG consisted of more and better connected sub-catchments that were generally less expensive, compared to its neighbouring canton. The framework developed in this study can be used to inform river managers how and where best to spend their rehabilitation budget for a given set of actions, ensures the cost-effective achievement of desired rehabilitation outcomes, and helps towards estimating total costs of long-term rehabilitation activities. Rehabilitation plans ready to be implemented may be based on additional aspects to the ones considered here, e.g., specific cost functions for rural and urban areas and/or for large and small rivers, which can simply be added to our approach. Optimizing investments in this way will ultimately increase the likelihood of on-ground success of rehabilitation activities.


Assuntos
Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Modelos Teóricos , Rios , Suíça
5.
Trends Ecol Evol ; 23(12): 649-54, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18848367

RESUMO

Conservation efforts and emergency medicine face comparable problems: how to use scarce resources wisely to conserve valuable assets. In both fields, the process of prioritising actions is known as triage. Although often used implicitly by conservation managers, scientists and policymakers, triage has been misinterpreted as the process of simply deciding which assets (e.g. species, habitats) will not receive investment. As a consequence, triage is sometimes associated with a defeatist conservation ethic. However, triage is no more than the efficient allocation of conservation resources and we risk wasting scarce resources if we do not follow its basic principles.


Assuntos
Conservação dos Recursos Naturais , Tomada de Decisões , Animais , Biodiversidade , Conservação dos Recursos Naturais/economia , Valores Sociais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA