Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800517

RESUMO

A new PSMA ligand (PSMA-D4) containing the Glu-CO-Lys pharmacophore connected with a new linker system (L-Trp-4-Amc) and chelator DOTA was developed for radiolabeling with therapeutic radionuclides. Herein we describe the synthesis, radiolabeling, and preliminary biological evaluation of the novel PSMA-D4 ligand. Synthesized PSMA-D4 was characterized using TOF-ESI-MS, NMR, and HPLC methods. The novel compound was subject to molecular modeling with GCP-II to compare its binding mode to analogous reference compounds. The radiolabeling efficiency of PSMA-D4 with 177Lu, 90Y, 47Sc, and 225Ac was chromatographically tested. In vitro studies were carried out in PSMA-positive LNCaP tumor cells membranes. The ex vivo tissue distribution profile of the radioligands and Cerenkov luminescence imaging (CLI) was studied in LNCaP tumor-bearing mice. PSMA-D4 was synthesized in 24% yield and purity >97%. The radio complexes were obtained with high yields (>97%) and molar activity ranging from 0.11 to 17.2 GBq mcmol-1, depending on the radionuclide. In vitro assays confirmed high specific binding and affinity for all radiocomplexes. Biodistribution and imaging studies revealed high accumulation in LNCaP tumor xenografts and rapid clearance of radiocomplexes from blood and non-target tissues. These render PSMA-D4 a promising ligand for targeted therapy of prostate cancer (PCa) metastases.


Assuntos
Sistemas de Liberação de Medicamentos , Calicreínas , Antígeno Prostático Específico , Neoplasias da Próstata , Compostos Radiofarmacêuticos , Animais , Humanos , Calicreínas/química , Calicreínas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Antígeno Prostático Específico/química , Antígeno Prostático Específico/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Molecules ; 24(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791394

RESUMO

Interactions of 21 fentanyl derivatives with µ-opioid receptor (µOR) were studied using experimental and theoretical methods. Their binding to µOR was assessed with radioligand competitive binding assay. A uniform set of binding affinity data contains values for two novel and one previously uncharacterized derivative. The data confirms trends known so far and thanks to their uniformity, they facilitate further comparisons. In order to provide structural hypotheses explaining the experimental affinities, the complexes of the studied derivatives with µOR were modeled and subject to molecular dynamics simulations. Five common General Features (GFs) of fentanyls' binding modes stemmed from these simulations. They include: GF1) the ionic interaction between D147 and the ligands' piperidine NH⁺ moiety; GF2) the N-chain orientation towards the µOR interior; GF3) the other pole of ligands is directed towards the receptor outlet; GF4) the aromatic anilide ring penetrates the subpocket formed by TM3, TM4, ECL1 and ECL2; GF5) the 4-axial substituent (if present) is directed towards W318. Except for the ionic interaction with D147, the majority of fentanyl-µOR contacts is hydrophobic. Interestingly, it was possible to find nonlinear relationships between the binding affinity and the volume of the N-chain and/or anilide's aromatic ring. This kind of relationships is consistent with the apolar character of interactions involved in ligand⁻receptor binding. The affinity reaches the optimum for medium size while it decreases for both large and small substituents. Additionally, a linear correlation between the volumes and the average dihedral angles of W293 and W133 was revealed by the molecular dynamics study. This seems particularly important, as the W293 residue is involved in the activation processes. Further, the Y326 (OH) and D147 (Cγ) distance found in the simulations also depends on the ligands' size. In contrast, neither RMSF measures nor D114/Y336 hydrations show significant structure-based correlations. They also do not differentiate studied fentanyl derivatives. Eventually, none of 14 popular scoring functions yielded a significant correlation between the predicted and observed affinity data (R < 0.30, n = 28).


Assuntos
Analgésicos Opioides/química , Fentanila/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores Opioides mu/química , Analgésicos Opioides/farmacologia , Sítios de Ligação , Desenho de Fármacos , Fentanila/farmacologia , Concentração Inibidora 50 , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Opioides mu/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA