Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(12): e114740, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485700

RESUMO

Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.


Assuntos
Cimentos Ósseos/química , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Osteoblastos/citologia , Polimetil Metacrilato/química , Prata/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Gentamicinas/farmacologia , Humanos , Técnicas In Vitro , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Acta Biomater ; 7(10): 3773-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21723963

RESUMO

Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 µm)(3) and nano-CT (3 µm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future.


Assuntos
Colágeno/farmacologia , Nanotecnologia/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Dióxido de Silício/farmacologia , Tomografia Computadorizada por Raios X/métodos , Animais , Materiais Biocompatíveis , Substitutos Ósseos/farmacologia , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/patologia , Imuno-Histoquímica , Perfusão , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA