Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Water Res ; 251: 121096, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184912

RESUMO

With the proliferation of reverse osmosis technology, seawater reverse osmosis desalination has been heralded as the solution to water scarcity for coastal regions. However, the large volume of desalination brine produced may pose an adverse environmental impact when directly discharged into the sea and result in energy wastage as the seawater pumped out is dumped back into the sea. Recently, zero liquid discharge has been extensively studied as a way to eliminate the aquatic ecotoxicity impact completely, despite being expensive and having a high carbon footprint. In this work, we propose a new strategy towards the treatment of brine to seawater level for disposal, dubbed reclaimed seawater discharge (RSD). This process is coupled with existing resource recovery techniques and waste alkali CO2 capture processes to produce an economically viable waste treatment process with minimal CO2 emissions. In this work, we placed significant focus on the electrolysis of brine, which simultaneously lowers the salinity of the desalination brine (56.0 ± 2.1 g/L) to seawater level (32.0 ± 1.4 g/L), generates alkali brine from seawater (pH 13.6) to remove impurities in brine (Mg2+ and Ca2+ to below ppm level), and recovers magnesium hydroxide, calcium carbonate, chlorine, bromine, and hydrogen gas as valuable resources. The RSD is further chemically dechlorinated and neutralised to pH 7.3 to be safe to discharge into the sea. The excess alkali brine is used to capture additional CO2 in the form of bicarbonates, achieving net abatement in climate change impact (9.90 CO2 e/m3) after product carbon abatements are accounted.


Assuntos
Sais , Purificação da Água , Purificação da Água/métodos , Dióxido de Carbono , Osmose , Água do Mar , Salinidade , Álcalis
2.
J Hazard Mater ; 421: 126717, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339992

RESUMO

Laboratory scale recycling of marine plastic litter consisting of polyethylene terephthalate (PET) bottle sorting, pyrolysis and chemical vapor deposition (CVD) was conducted to identify the technical and environmental implications of the technology when dealing with real waste streams. Collected seashore and underwater plastics (SP and UP, respectively) contained large quantities of PET bottles (33.2 wt% and 61.4 wt%, respectively), suggesting PET separation was necessary prior to pyrolysis. After PET sorting, marine litter was converted into pyrolysis oil and multi-walled carbon nanotubes (MWCNTs). Water-based washing of litter prior to pyrolysis did not significantly change the composition of pyrolysis products and could be avoided, eliminating freshwater consumption. However, distinct differences in oil and MWCNT properties were ascribed to the variations in feedstock composition. Maintaining consistent product quality would be one of challenges for thermochemical treatment of marine litter. As for the environmental implications, life cycle assessment (LCA) demonstrated positive benefits, including improved climate change and fossil depletion potentials. The highest positive environmental impacts were associated with MWCNT production followed by pyrolysis oil and PET recovery. The benefits of proposed approach combining PET sorting, pyrolysis and CVD allowed to close the waste loop by converting most of the marine litter into valuable products.


Assuntos
Nanotubos de Carbono , Plásticos , Laboratórios , Polietilenotereftalatos , Reciclagem
3.
J Hazard Mater ; 419: 126450, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323708

RESUMO

In this study, industrial wastewater and groundwater were comparatively investigated for their physicochemical properties, concentrations of potentially toxic elements (PTEs), human health risks and pollution source(s). Every month, 34 wastewater samples and 26 groundwater samples were collected, for a duration of one year. The results showed that the physicochemical parameters and concentrations of PTEs in the industrial wastewater exceeded the maximum permissible limits of Pakistan Environmental Protection Agency (2000). Specifically, it was found that total dissolved solids (5%), total suspended solids (190%), chemical oxygen demand (107%), five-days biochemical oxygen demand (5.7 times), grease/oil (27.1 times), Fe (67%), Zn (29%), Mn (32%), Cu (27%), Ni (16%), Cr (8%), Pb (106%), and Cd (80%) were higher than the permissible limits. The carcinogenic and non-carcinogenic dermal health risks for wastewater irrigation group were significantly higher than the groundwater irrigation group. The hazard index of irrigation with industrial wastewater was 180 times higher than the groundwater. The principal component analysis indicated that industry was the main polluting source. The cluster analysis results of all PTEs (except Fe) were found in the same clade in the dendrogram, which showed a strong similarity within the monthly data set of the whole year. The study recommends using adjacent groundwater instead of industrial wastewater for irrigation purposes.


Assuntos
Metais Pesados , Águas Residuárias , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Paquistão , Medição de Risco
4.
Chemosphere ; 278: 130462, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33845436

RESUMO

Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)). The greatest environmental impact was observed when cotton textile was used as SM. HDPE plastic demonstrated the least impact (13 out of 19 categories), followed by ceramic, glass and paper. However, considering the end-of-life scenarios and release of microplastics into the environment, ceramic, glass or paper could be the most suitable options for SMs. Amongst the EMs, the replacement of metals, especially noble metals, by carbon-based EMs greatly reduces the environmental footprint of SPEs. Compared with other materials, carbon black was the least impactful on the environment. On the other hand, copper and waste-derived CNTs (WCNTs) showed low impacts except for terrestrial ecotoxicity and human toxicity (non-cancer) potentials. In comparison to commercial CNTs (CCNTs), WCNTs demonstrated lower environmental footprint and comparable voltammetric performance in heavy metal detections, justifying the substitution of CCNTs with WCNTs in commercial applications. In conclusion, a combination of carbon black or WCNTs EMs with ceramic, glass or paper SMs represents the most environmentally friendly SPE configurations for voltammetric sensor arrangement.


Assuntos
Nanotubos de Carbono , Cerâmica , Eletrodos , Humanos , Plásticos
5.
Anal Chem ; 93(4): 1880-1888, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33430590

RESUMO

This Feature summarizes recent works in paper-based potentiometry and voltammetry in heavy metal determination. Interactions of paper substrates with heavy metals, influence on the sensing response, and modification methods applied to paper substrates to improve the performance of recently developed electrochemical sensors are discussed. Since the rekindling of interest in paper-based analytical devices, methodologies and electrode designs for heavy metal determinations are highlighted. Promising aspects of the use of these sensors for samples containing solids and the increased versatility of the use of paper in analytics offers the possibility of increased acceptance of these low-cost platforms.


Assuntos
Técnicas Eletroquímicas/métodos , Metais Pesados/química , Papel , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos
6.
J Hazard Mater ; 390: 121449, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31630860

RESUMO

A solution to low recycling rates of plastic waste is the conversion into multi-walled carbon nanotubes (MWCNTs) that have high value and can create additional revenue for plant operators. The purpose of this study was to perform a life cycle assessment (LCA) of an integrated system that involves flexible packaging plastic waste (FPPW) pyrolysis, oil upgrading, and MWCNTs production. The objectives were to determine the environmental impact of MWCNTs synthesis from non-condensable pyrolysis gases, and to assess the environmental impact of MWCNTs synthesis from different plastic fractions. Integrating MWCNTs synthesis to the plastic pyrolysis process provides various environmental benefits including, reduction of contribution towards climate change, fossil depletion, human toxicity (cancer), and ionizing radiation potentials. Sensitivity analysis of MWCNTs yields provided the range of impacts on the environment and a critical yield of >2% for most impact categories was determined. Comparison of different plastic fractions indicated that using low PET content feedstock had lesser impact on the environment, and demonstrated comparable performance to mixed virgin plastics for most impact categories. The results highlighted the versatility of the integrated pyrolysis process for treating diverse plastic waste fractions with negligible effects from the impurities present in the actual FPPW during thermal processing.

7.
J Hazard Mater ; 385: 121600, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31771889

RESUMO

Incineration bottom ash (IBA) faces challenges for its sustainable recycling due to the absence of scenario-specific risk assessment. Environmental risk assessment was carried out via a case study incorporating key factors to dominate human exposures during IBA utilization in land reclamation. Three research components echoing respective IBA leaching, exposures, and consequences were performed under a supportive framework to elaborate these interlinked key factors and unveil the potential environmental risks. IBA leachability was firstly investigated using various laboratory standard leaching methods while conducted a large-scale field trial experiment for mutual confirmation, suggesting that maximum leached amounts may be achieved when liquid to solid (L/S) ratio increases to 10. Dilution and transportation models were both developed to discriminate the mitigation of IBA leachate between two periods i.e. during and after land reclamation, suggesting that dilution rather than transportation may dominate the environmental impact for metal exposures. Metal bioaccumulation from a typical mollusk species was performed coupling the calculated dietary safety limits based on Singaporean diet intake for development of the threshold of toxicology concerns on human exposures. With such, IBA benign usage in land reclamation was also conferred in the form of distance and dilution factor.


Assuntos
Bioacumulação , Cinza de Carvão/toxicidade , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental , Animais , Bivalves/efeitos dos fármacos , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA