Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952693

RESUMO

Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.


Assuntos
Bacteriófagos , Biotecnologia , Interações Hospedeiro-Patógeno , Bactérias/virologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Biodiversidade , Biofilmes , Biotecnologia/economia , Genoma Viral , Estágios do Ciclo de Vida
2.
Brief Bioinform ; 19(1): 148-161, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27777222

RESUMO

Bacterial effector proteins secreted by various protein secretion systems play crucial roles in host-pathogen interactions. In this context, computational tools capable of accurately predicting effector proteins of the various types of bacterial secretion systems are highly desirable. Existing computational approaches use different machine learning (ML) techniques and heterogeneous features derived from protein sequences and/or structural information. These predictors differ not only in terms of the used ML methods but also with respect to the used curated data sets, the features selection and their prediction performance. Here, we provide a comprehensive survey and benchmarking of currently available tools for the prediction of effector proteins of bacterial types III, IV and VI secretion systems (T3SS, T4SS and T6SS, respectively). We review core algorithms, feature selection techniques, tool availability and applicability and evaluate the prediction performance based on carefully curated independent test data sets. In an effort to improve predictive performance, we constructed three ensemble models based on ML algorithms by integrating the output of all individual predictors reviewed. Our benchmarks demonstrate that these ensemble models outperform all the reviewed tools for the prediction of effector proteins of T3SS and T4SS. The webserver of the proposed ensemble methods for T3SS and T4SS effector protein prediction is freely available at http://tbooster.erc.monash.edu/index.jsp. We anticipate that this survey will serve as a useful guide for interested users and that the new ensemble predictors will stimulate research into host-pathogen relationships and inspiration for the development of new bioinformatics tools for predicting effector proteins of T3SS, T4SS and T6SS.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Genoma Bacteriano , Matrizes de Pontuação de Posição Específica , Algoritmos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Software
3.
Proc Natl Acad Sci U S A ; 109(49): E3358-66, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23151513

RESUMO

The controlled biogenesis of mitochondria is a key cellular system coordinated with the cell division cycle, and major efforts in systems biology currently are directed toward understanding of the control points at which this coordination is achieved. Here we present insights into the function, evolution, and regulation of mitochondrial biogenesis through the study of the protein import machinery in the human fungal pathogen, Candida albicans. Features that distinguish C. albicans from baker's yeast (Saccharomyces cerevisiae) include the stringency of metabolic control at the level of oxygen consumption, the potential for ATP exchange through the porin in the outer membrane, and components and domains in the sorting and assembling machinery complex, a molecular machine that drives the assembly of proteins in the outer mitochondrial membrane. Analysis of targeting sequences and assays of mitochondrial protein import show that components of the electron transport chain are imported by distinct pathways in C. albicans and S. cerevisiae, representing an evolutionary rewiring of mitochondrial import pathways. We suggest that studies using this pathogen as a model system for mitochondrial biogenesis will greatly enhance our knowledge of how mitochondria are made and controlled through the course of the cell-division cycle.


Assuntos
Evolução Biológica , Candida albicans/fisiologia , Proteínas de Transporte/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Análise por Conglomerados , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Cadeias de Markov , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Consumo de Oxigênio/fisiologia , Filogenia , Transporte Proteico/fisiologia , Saccharomyces cerevisiae , Especificidade da Espécie
4.
PLoS One ; 7(8): e43245, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905239

RESUMO

Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.


Assuntos
Biologia Computacional/métodos , Adesinas Bacterianas/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Transporte Biológico , Chlamydiales/metabolismo , Escherichia coli/metabolismo , Fusobactérias/metabolismo , Humanos , Cadeias de Markov , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ralstonia/metabolismo , Software
5.
Methods Mol Biol ; 619: 271-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20419416

RESUMO

Protein import and export pathways are driven by protein translocases, often comprised of multiple subunits, and usually conserved across a range of organisms. Protein import into mitochondria is fundamental to eukaryotic organisms and is initiated when substrate proteins are translocated across the mitochondrial outer membrane by the TOM complex. The essential subunit of this complex is a protein called Tom40, which is probably a beta-barrel in structure and serves as the translocation pore. We describe a hidden Markov model search designed to find the Tom40 sequence in the amoeba Entamoeba histolytica. This organism has a highly reduced "mitosome", an organelle whose relationship to mitochondria has been the subject of controversy. The Tom40 sequence could not be found with BLAST-based searches, but a hidden Markov model search identified a likely candidate to form the protein import pore in the outer mitosomal membrane in E. histolytica.


Assuntos
Entamoeba histolytica/metabolismo , Cadeias de Markov , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Transporte Proteico , Homologia de Sequência de Aminoácidos
6.
PLoS Pathog ; 6(3): e1000812, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20333239

RESUMO

Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.


Assuntos
Entamoeba histolytica/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Vesículas Citoplasmáticas/metabolismo , Entamoeba histolytica/genética , Genoma de Protozoário , Cadeias de Markov , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Filogenia , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética
7.
Mol Biol Evol ; 24(5): 1149-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17329230

RESUMO

The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of approximately 10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8-Tim13(10) complex becomes essential and the Tim9-Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Chaperonas Moleculares/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Duplicação Gênica , Humanos , Cadeias de Markov , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Conformação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/fisiologia
8.
Int J Parasitol ; 36(14): 1499-514, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17011565

RESUMO

The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.


Assuntos
Leishmania major/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Divisão Celular/genética , Deleção de Genes , Genoma de Protozoário/genética , Kinetoplastida/química , Kinetoplastida/genética , Kinetoplastida/ultraestrutura , Leishmania major/química , Leishmania major/ultraestrutura , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Estágios do Ciclo de Vida , Cadeias de Markov , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura/métodos , Mitocôndrias/química , Mitocôndrias/genética , Membranas Mitocondriais/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma/química , Trypanosoma/genética , Trypanosoma/ultraestrutura , Virulência/genética
9.
J Mol Biol ; 347(1): 81-93, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15733919

RESUMO

Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.


Assuntos
Conformação Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Sítios de Ligação , Evolução Molecular , Humanos , Cadeias de Markov , Proteínas de Transporte da Membrana Mitocondrial , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/classificação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA