Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38862000

RESUMO

Objective.In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current. This study investigated the dosimetric implications of such beam current fluctuations during proton PBS continuous scanning.Approach.Using representative clinical proton PBS plans, we performed simulations to mimic a worst-case clinical delivery environment with beam current varies from 50% to 250% of the nominal values. The simulations used the beam delivery parameters optimized for the best beam delivery efficiency of the upcoming particle therapy system at Mayo Clinic Florida. We reconstructed the simulated delivered dose distributions and evaluated the dosimetric impact of beam current fluctuations.Main results.Despite significant beam current fluctuations resulting in deviations at each spot level, the overall dose distributions were nearly identical to those assuming a stable beam current. The 1 mm/1% Gamma passing rate was 100% for all plans. Less than 0.2% root mean square error was observed in the planning target volume dose-volume histogram. Minimal differences were observed in all dosimetric evaluation metrics.Significance.Our findings demonstrate that with our beam delivery system and clinical planning practice, while significant beam current fluctuations may result in large local move monitor unit deviations at each spot level, the overall impact on the dose distribution is minimal.


Assuntos
Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo
2.
Lab Chip ; 22(12): 2376-2391, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635092

RESUMO

Flexible and wearable electronic sensors hold great promise for improving the quality of life, especially in the field of healthcare monitoring, owing to their low cost, flexibility, high electromechanical coupling performance, high sensitivity, and biocompatibility. To achieve high piezoelectric performance similar to that of rigid materials while satisfying the flexible requirements for wearable sensors, we propose novel hybrid films based on lead zirconate titanate powder and microfibrillated cellulose (PZT/MFC) for plantar pressure measurements. The flexible films made using the polarization process are tested. It was found that the maximum piezoelectric coefficient was 31 pC N-1 and the maximum tensile force of the flexible films was 26 N. A wide range of bending angles between 15° and 180° proves the flexibility capability of the films. In addition, the charge density shows a proportional relation with the applied mechanical force, and it could sense stress of 1 kPa. Finally, plantar pressure sensors are arranged and packaged with a film array followed by connection with the detection module. Then, the pressure curves of each point on the plantar are obtained. Through analysis of the curve, several parameters of human body motions that are important in the rehabilitation of diabetic patients and the detection of sports injury can be performed, including stride frequency, length and speed. Overall, the proposed PZT/MFC wearable plantar pressure sensor has broad application prospects in the field of sports injury detection and medical rehabilitation training.


Assuntos
Traumatismos em Atletas , Dispositivos Eletrônicos Vestíveis , Celulose , Corpo Humano , Humanos , Chumbo , Pressão , Qualidade de Vida , Titânio , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA