Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344910

RESUMO

BACKGROUND: Pretreatment identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is important when selecting treatment strategies. PURPOSE: To improve models for predicting MVI and recurrence-free survival (RFS) by developing nomograms containing three-dimensional (3D) MR elastography (MRE). STUDY TYPE: Prospective. POPULATION: 188 patients with HCC, divided into a training cohort (n = 150) and a validation cohort (n = 38). In the training cohort, 106/150 patients completed a 2-year follow-up. FIELD STRENGTH/SEQUENCE: 1.5T 3D multifrequency MRE with a single-shot spin-echo echo planar imaging sequence, and 3.0T multiparametric MRI (mp-MRI), consisting of diffusion-weighted echo planar imaging, T2-weighted fast spin echo, in-phase out-of-phase T1-weighted fast spoiled gradient-recalled dual-echo and dynamic contrast-enhanced gradient echo sequences. ASSESSMENT: Multivariable analysis was used to identify the independent predictors for MVI and RFS. Nomograms were constructed for visualization. Models for predicting MVI and RFS were built using mp-MRI parameters and a combination of mp-MRI and 3D MRE predictors. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, chi-squared or Fisher's exact tests, multivariable analysis, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log rank tests. P < 0.05 was considered significant. RESULTS: Tumor c and liver c were independent predictors of MVI and RFS, respectively. Adding tumor c significantly improved the diagnostic performance of mp-MRI (AUC increased from 0.70 to 0.87) for MVI detection. Of the 106 patients in the training cohort who completed the 2-year follow up, 34 experienced recurrence. RFS was shorter for patients with MVI-positive histology than MVI-negative histology (27.1 months vs. >40 months). The MVI predicted by the 3D MRE model yielded similar results (26.9 months vs. >40 months). The MVI and RFS nomograms of the histologic-MVI and model-predicted MVI-positive showed good predictive performance. DATA CONCLUSION: Biomechanical properties of 3D MRE were biomarkers for MVI and RFS. MVI and RFS nomograms were established. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

2.
Insights Imaging ; 14(1): 89, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198348

RESUMO

BACKGROUND: To investigate the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE). METHODS: This prospective study included 121 patients with 124 HCCs as training cohort, and validation cohort included 33 HCCs. They all underwent preoperative conventional magnetic resonance imaging (MRI) and tomoelastography based on 3D multifrequency MRE. Viscoelastic parameters of the tumor and liver were quantified as shear wave speed (c, m/s) and loss angle (φ, rad), representing stiffness and fluidity, respectively. Five MRI features were evaluated. Multivariate logistic regression analyses were used to determine predictors of proliferative HCC to construct corresponding nomograms. RESULTS: In training cohort, model 1 (Combining cirrhosis, hepatitis virus, rim APHE, peritumoral enhancement, and tumor margin) yielded an area under the curve (AUC), sensitivity, specificity, accuracy of 0.72, 58.73%,78.69%, 67.74%, respectively. When adding MRE properties (tumor c and tumor φ), established model 2, the AUC increased to 0.81 (95% CI 0.72-0.87), with sensitivity, specificity, accuracy of 71.43%, 81.97%, 75%, respectively. The C-index of nomogram of model 2 was 0.81, showing good performance for proliferative HCC. Therefore, integrating tumor c and tumor φ can significantly improve the performance of preoperative diagnosis of proliferative HCC (AUC increased from 0.72 to 0.81, p = 0.012). The same finding was observed in the validation cohort, with AUC increasing from 0.62 to 0.77 (p = 0.021). CONCLUSIONS: Proliferative HCC exhibits low stiffness and high fluidity. Adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC. CRITICAL RELEVANCE STATEMENT: We investigated the viscoelastic signatures of proliferative hepatocellular carcinoma (HCC) using three-dimensional (3D) magnetic resonance elastography (MRE), and find that adding MRE properties (tumor c and tumor φ) can improve performance of conventional MRI for preoperative diagnosis of proliferative HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA