RESUMO
Exposure to greenness is increasingly linked to beneficial health outcomes, but the associations between greenness and the disease burden of lower respiratory infections (LRIs) are unclear. We used the normalized difference vegetation index (NDVI) and the leaf area index (LAI) to measure greenness and incidence, death, and disability-adjusted life years (DALYs) due to LRIs to represent the disease burden of LRIs. We applied a generalized linear mixed model to evaluate the association between greenness and LRI disease burden and performed a stratified analysis, after adjusting for covariates. Additionally, we assessed the potential mediating effects of fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), and heat on the association between greenness and the disease burden of LRIs. In the adjusted model, one 0.1 unit increase of NDVI and 0.5 increase in LAI were significantly inversely associated with incidence, death, and DALYs due to LRIs, respectively. Greenness was negatively correlated with the disease burden of LRIs across 15-65 age group, both sexes, and low SDI groups. PM2.5, O3, and heat mediated the effects of greenness on the disease burden of LRIs. Greenness was significantly negatively associated with the disease burden of LRIs, possibly by reducing exposure to air pollution and heat.
Assuntos
Poluição do Ar , Infecções Respiratórias , Feminino , Masculino , Humanos , Temperatura Alta , Infecções Respiratórias/epidemiologia , Efeitos Psicossociais da Doença , Material ParticuladoRESUMO
Waste management is one of the biggest environmental challenges worldwide. Biomass-derived hard carbons, which can be applied to rechargeable batteries, can contribute to mitigating environmental changes by enabling the use of renewable energy. This study has carried out a comparative environmental assessment of sustainable hard carbons, produced from System A (hydrothermal carbonization (HTC) followed by pyrolysis) and System B (direct pyrolysis) with different carbon yields, as anodes in sodium-ion batteries (SIBs). We have also analysed different scenarios to save energy in our processes and compared the biomass-derived hard carbons with commercial graphite used in lithium-ion batteries. The life cycle assessment results show that the two systems display significant savings in terms of their global warming potential impact (A1: -30%; B1: -21%), followed by human toxicity potential, photochemical oxidants creation potential, acidification potential and eutrophication potential (both over -90%). Possessing the best electrochemical performance for SIBs among our prepared hard carbons, the HTC-based method is more stable in both environmental and electrochemical aspects than the direct pyrolysis method. Such results help a comprehensive understanding of sustainable hard carbons used in SIBs and show an environmental potential to the practical technologies. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.