Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(3): 594-604, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582152

RESUMO

Atmospheric micro-/nanominerals play an important role in the adsorption, enrichment, and migration of organochlorine pesticides (OCPs). In the present study, the correlations between OCPs and minerals in outdoor atmospheric dustfall were investigated, and the correlations were used to speculate the source of p,p'-(dicofol+dichlorobenzophenone [DBP]), which is the sum of p,p'-dicofol and p,p'-DBP. Atmospheric dustfall samples were collected from 53 sites in the Chengdu-Deyang-Mianyang economic region in the Sichuan basin. In this region, 24 OCPs were analyzed by gas chromatography-tandem mass spectrometry. The average concentration of 24 OCPs was 51.2 ± 27.4 ng/g. The results showed that the concentration of Σ24 OCPs in urban areas was higher than that in suburban areas (p < 0.05). Minerals in atmospheric dustfall were semiquantitatively analyzed by X-ray diffraction. The primary minerals were quartz, calcite, and gypsum. A Spearman correlation analysis of OCPs and minerals showed that low-volatility OCPs could be adsorbed by minerals in atmospheric dustfall. A density functional theory simulation verified that p,p'-(dicofol+DBP) in atmospheric dustfall was primarily derived from the p,p'-dicofol adsorbed by gypsum. Isomeric ratio results suggested that the samples had weathered lindane and chlordane profiles and confirmed that residents in the Sichuan basin used technical dichlorodiphenyltrichloroethane. Finally, the OCPs were evaluated to determine the potential risk of cancer in adults and children from OCP exposure. Exposure to OCPs via atmospheric dustfall was safe for adults. The cancer risk for children exposed to OCPs was slightly lower than the threshold value (10-6 ) under a high dust ingestion rate, which poses a concern. Environ Toxicol Chem 2023;42:594-604. © 2022 SETAC.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Criança , Humanos , Adsorção , Sulfato de Cálcio/análise , Dicofol/análise , Cromatografia Gasosa-Espectrometria de Massas , Praguicidas/análise , Hidrocarbonetos Clorados/análise , DDT/análise , Medição de Risco , China , Monitoramento Ambiental/métodos
2.
Environ Sci Pollut Res Int ; 24(28): 22143-22151, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27928751

RESUMO

Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.


Assuntos
Eutrofização , Sedimentos Geológicos/microbiologia , Lagos/química , Modelos Teóricos , Rodopseudomonas/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Ecossistema , Sedimentos Geológicos/química , Lagos/microbiologia , Fotossíntese , Poluentes Químicos da Água/metabolismo
3.
Int J Mol Sci ; 15(12): 23604-15, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25530614

RESUMO

Calcified coccolithophores generate calcium carbonate scales around their cell surface. In light of predicted climate change and the global carbon cycle, the biomineralization ability of coccoliths has received growing interest. However, the underlying biomineralization mechanism is not yet well understood; the lack of non-invasive characterizing tools to obtain molecular level information involving biogenic processes and biomineral components remain significant challenges. In the present study, synchrotron-based Nano-computed Tomography (Nano-CT) and Scanning Transmission X-ray Microscopy-Near-edge X-ray Absorption Fine Structure Spectromicroscopy (STXM-NEXAFS) techniques were employed to identify Ca spatial distribution and investigate the compositional chemistry and distinctive features of the association between biomacromolecules and mineral components of calcite present in coccoliths. The Nano-CT results show that the coccolith scale vesicle is similar as a continuous single channel. The mature coccoliths were intracellularly distributed and immediately ejected and located at the exterior surface to form a coccoshpere. The NEXAFS spectromicroscopy results of the Ca L edge clearly demonstrate the existence of two levels of gradients spatially, indicating two distinctive forms of Ca in coccoliths: a crystalline-poor layer surrounded by a relatively crystalline-rich layer. The results show that Sr is absorbed by the coccoliths and that Sr/Ca substitution is rather homogeneous within the coccoliths. Our findings indicate that synchrotron-based STXM-NEXAFS and Nano-CT are excellent tools for the study of biominerals and provide information to clarify biomineralization mechanism.


Assuntos
Cálcio/metabolismo , Haptófitas/ultraestrutura , Haptófitas/química , Haptófitas/metabolismo , Espectroscopia por Absorção de Raios X , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA