Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 25(8): 1474-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25050945

RESUMO

We review the Hodgkin-Huxley, Izhikevich, and leaky integrate-and-fire neuron models in regular spiking modes solved with the forward Euler, fourth-order Runge-Kutta, and exponential Euler methods and determine the necessary time steps and corresponding computational costs required to make the solutions accurate. We conclude that the leaky integrate-and-fire needs the least number of computations, and that the Hodgkin-Huxley and Izhikevich models are comparable in computational cost.


Assuntos
Potenciais de Ação/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Algoritmos , Animais , Simulação por Computador
2.
J Acoust Soc Am ; 125(2): 640-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206842

RESUMO

With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.


Assuntos
Acústica , Simulação por Computador , Planeta Terra , Marte , Modelos Teóricos , Saturno , Som , Meio Ambiente Extraterreno , Gases , Método de Monte Carlo , Movimento (Física) , Dinâmica não Linear , Pressão , Reprodutibilidade dos Testes , Temperatura
3.
J Acoust Soc Am ; 123(6): 4118-26, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18537363

RESUMO

In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.


Assuntos
Acústica , Absorção , Percepção Auditiva , Simulação por Computador , Modelos Biológicos , Método de Monte Carlo , Oscilometria , Teoria Quântica , Rotação , Termodinâmica , Vibração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA