Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(9): 3031-3048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181028

RESUMO

Cytochrome P450 1A1 (CYP1A1) metabolizes estrogens, melatonin, and other key endogenous signaling molecules critical for embryonic/fetal development. The enzyme has increasing expression during pregnancy, and its inhibition or knockout increases embryonic/fetal lethality and/or developmental problems. Here, we present a virtual screening model for CYP1A1 inhibitors based on the orthosteric and predicted allosteric sites of the enzyme. Using 1001 reference compounds with CYP1A1 activity data, we optimized the decision thresholds of our model and classified the training compounds with 68.3% balanced accuracy (91.0% sensitivity and 45.7% specificity). We applied our final model to 11 known CYP1A1 orthosteric binders and related compounds, and found that our ranking of the known orthosteric binders generally agrees with the relative activity of CYP1A1 in metabolizing these compounds. We also applied the model to 22 new test compounds with unknown/unclear CYP1A1 inhibitory activity, and predicted 16 of them are CYP1A1 inhibitors. The CYP1A1 potency and modes of inhibition of these 22 compounds were experimentally determined. We confirmed that most predicted inhibitors, including drugs contraindicated during pregnancy (amiodarone, bicalutamide, cyproterone acetate, ketoconazole, and tamoxifen) and environmental agents suspected to be endocrine disruptors (bisphenol A, diethyl and dibutyl phthalates, and zearalenone), are indeed potent inhibitors of CYP1A1. Our results suggest that virtual screening may be used as a rapid tier-one method to screen for potential CYP1A1 inhibitors, and flag them out for further experimental evaluations.


Assuntos
Citocromo P-450 CYP1A1/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sítio Alostérico , Animais , Simulação por Computador , Citocromo P-450 CYP1A1/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Humanos
2.
Arch Toxicol ; 94(9): 2951-2964, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601827

RESUMO

High-content imaging (HCI) provides quantitative and information-rich measurements of chemical effects on human in vitro cell models. Identification of discriminative phenotypic endpoints from cellular features obtained from HCI is required for accurate assessments of potential chemical hazards. However, the use of suboptimal metrics to quantify the concentration-response curves (CRC) of chemicals based on these features may obscure discriminative features, and lead to non-predictive endpoints and poor chemical classifications or hazard assessments. Here, we present a systematic and data-driven study on the performances of different CRC metrics in identifying image-based phenotypic features that can accurately classify the effects of reference chemicals with known in vivo toxicities. We studied four previous HCI in vitro nephro- or pulmono-toxicity datasets, which contain phenotypic feature measurements from different cell and feature types. Within a feature type, we found that efficacy metrics at higher chemical concentrations tend to give higher classification accuracy, whereas potency metrics do not have obvious trends across different response levels. Across different cell and feature types, efficacy metrics generally gave higher classification accuracy than potency metrics and area under the curve (AUC). Our results suggest that efficacy metrics, especially at higher concentrations, are more likely to help us to identify discriminative phenotypic endpoints. Therefore, HCI experiments for toxicological applications should include measurements at sufficiently high chemical concentrations, and efficacy metrics should always be analyzed. The identified features may be used as specific toxicity endpoints for further chemical hazard assessment.


Assuntos
Testes de Toxicidade , Área Sob a Curva , Benchmarking , Substâncias Perigosas , Humanos , Medição de Risco
3.
Chem Res Toxicol ; 33(3): 834-848, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32041405

RESUMO

The ongoing developments in chemical risk assessment have led to new concepts building on integration of sophisticated nonanimal models for hazard characterization. Here we explore a pragmatic approach for implementing such concepts, using a case study of three triazole fungicides, namely, flusilazole, propiconazole, and cyproconazole. The strategy applied starts with evaluating the overall level of concern by comparing exposure estimates to toxicological potential, followed by a combination of in silico tools and literature-derived high-throughput screening assays and computational elaborations to obtain insight into potential toxicological mechanisms and targets in the organism. Additionally, some targeted in vitro tests were evaluated for their utility to confirm suspected mechanisms of toxicity and to generate points of departure. Toxicological mechanisms instead of the current "end point-by-end point" approach should guide the selection of methods and assays that constitute a toolbox for next-generation risk assessment. Comparison of the obtained in silico and in vitro results with data from traditional in vivo testing revealed that, overall, nonanimal methods for hazard identification can produce adequate qualitative hazard information for risk assessment. Follow-up studies are needed to further refine the proposed approach, including the composition of the toolbox, toxicokinetics models, and models for exposure assessment.


Assuntos
Fungicidas Industriais/toxicidade , Ensaios de Triagem em Larga Escala , Silanos/toxicidade , Testes de Toxicidade , Triazóis/toxicidade , Humanos , Estrutura Molecular , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA