Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phys Med Biol ; 64(2): 025016, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30561376

RESUMO

Taking advantage of Bragg peak and small spot size, pencil beam scanning proton therapy can deliver a highly conformal dose distribution to target while sparing normal tissues. However, such dose distributions can be highly sensitive to the proton range uncertainty which can reach 5% or higher in lung tissue. One proposed method for reducing range uncertainty is to measure the water equivalent path length (WEPL) by proton radiography. In this study, we followed a newly proposed proton beam radiography technique based on energy resolved dose functions (ERDF) to construct a Monte Carlo model for a single detector energy-resolved proton radiography system (SDPRS). This SDPRS model was constructed in the Monte Carlo software package TOPAS (TOol for PArticle Simulation) and it includes the Mevion HYPERSCAN™ pencil beam scanning treatment head and a 2D dose detector positioned downstream as the imager. A calibration phantom containing a number of tissue equivalent materials was simulated to evaluate the accuracy in WEPL measurement by SDPRS. The mean deviation of the obtained relative stopping power (RSP) from the reference values was 0.31%. Proton radiographs of an anthropomorphic head phantom were also generated to demonstrate the clinical relevance of the technique. Effects of different energy layer spacing and measurement noise were also studied.


Assuntos
Cabeça/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Prótons , Radiografia/métodos , Calibragem , Humanos
2.
Med Phys ; 45(1): 48-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134674

RESUMO

PURPOSE: The purpose of this work is to evaluate the performance of dual-energy CT (DECT) for determining proton stopping power ratios (SPRs) in an experimental environment and to demonstrate its potential advantages over conventional single-energy CT (SECT) in clinical conditions. METHODS: Water equivalent range (WER) measurements of 12 tissue-equivalent plastic materials and 12 fresh animal tissue samples are performed in a 195 MeV broad proton beam using the dose extinction method. SECT and DECT scans of the samples are performed with a dual-source CT scanner (Siemens SOMATOM Definition Flash). The methods of Schneider et al. (1996), Bourque et al. (2014), and Lalonde et al. (2017) are used to predict proton SPR on SECT and DECT images. From predicted SPR values, the WER of the proton beam through the sample is predicted for SECT and DECT using Monte Carlo simulations and compared to the measured WER. RESULTS: For homogeneous tissue-equivalent plastic materials, results with DECT are consistent with experimental measurements and show a systematic reduction of SPR uncertainty compared to SECT, with root-mean-square errors of 1.59% versus 0.61% for SECT and DECT, respectively. Measurements with heterogeneous animal samples show a clear reduction of the bias on range predictions in the presence of bones, with -0.88% for SECT versus -0.58% and -0.14% for both DECT methods. An uncertainty budget allows isolating the effect of CT number conversion to SPR and predicts improvements by DECT over SECT consistently with theoretical predictions, with 0.34% and 0.31% for soft tissues and bones in the experimental setup compared to 0.34% and 1.14% with the theoretical method. CONCLUSIONS: The present work uses experimental measurements in a realistic clinical environment to show potential benefits of DECT for proton therapy treatment planning. Our results show clear improvements over SECT in tissue-equivalent plastic materials and animal tissues. Further work towards using Monte Carlo simulations for treatment planning with DECT data and a more detailed investigation of the uncertainties on I-value and limitations on the Bragg additivity rule could potentially further enhance the benefits of this imaging technology for proton therapy.


Assuntos
Terapia com Prótons , Radioterapia Guiada por Imagem , Tomografia Computadorizada por Raios X/métodos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 18(6): 200-205, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29082601

RESUMO

PURPOSE: Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. METHODS: Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. RESULTS: Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. CONCLUSION: Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Humanos , Plásticos/química , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Incerteza , Água/química
4.
Int J Radiat Oncol Biol Phys ; 95(1): 454-464, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084660

RESUMO

PURPOSE: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions. METHODS AND MATERIALS: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT). For modalities (B)-(D) the dose and linear energy transfer (LET) distributions were simulated using the TOPAS Monte Carlo platform and RBE was calculated according to 3 different models. RESULTS: Assuming a fixed RBE of 1.1, our implementation of IMRT outperformed SB proton therapy across most normal tissue metrics. For the scattered AO proton plans, application of the variable RBE models resulted in substantial hotspots in rectal RBE weighted dose. For AO IMPT, it was typically not possible to find a plan that simultaneously met the tumor and rectal constraints for both fixed and variable RBE models. CONCLUSION: If either a fixed RBE of 1.1 or a variable RBE model could be validated in vivo, then it would always be possible to use AO IMPT to dose-boost the prostate and improve normal tissue sparing relative to IMRT. For a cohort without rectum spacer gels, this study (1) underlines the importance of resolving the question of proton RBE within the framework of an IMRT versus proton debate for the prostate and (2) highlights that without further LET/RBE model validation, great care must be taken if AO proton fields are to be considered for prostate treatments.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reto/efeitos da radiação , Eficiência Biológica Relativa , Humanos , Transferência Linear de Energia , Masculino , Método de Monte Carlo , Tratamentos com Preservação do Órgão/métodos , Pênis/efeitos da radiação , Próteses e Implantes , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Bexiga Urinária/efeitos da radiação
5.
Int J Radiat Oncol Biol Phys ; 89(1): 161-6, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24725699

RESUMO

PURPOSE: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. METHODS AND MATERIALS: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. RESULTS: Exposure of mice to a dose of 600 Gy of proton beam-generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. CONCLUSIONS: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.


Assuntos
Longevidade/efeitos da radiação , Neoplasias Experimentais/etiologia , Neoplasias Induzidas por Radiação/etiologia , Nêutrons/efeitos adversos , Terapia com Prótons/efeitos adversos , Espalhamento de Radiação , Irradiação Corporal Total/efeitos adversos , Fatores Etários , Animais , Causas de Morte , Fracionamento da Dose de Radiação , Feminino , Camundongos , Método de Monte Carlo , Neoplasias Experimentais/mortalidade , Neoplasias Induzidas por Radiação/mortalidade , Irradiação Corporal Total/métodos , Irradiação Corporal Total/mortalidade
6.
Phys Med Biol ; 56(9): 2837-54, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21478569

RESUMO

Nowadays, Monte Carlo models of proton therapy treatment heads are being used to improve beam delivery systems and to calculate the radiation field for patient dose calculations. The achievable accuracy of the model depends on the exact knowledge of the treatment head geometry and time structure, the material characteristics, and the underlying physics. This work aimed at studying the uncertainties in treatment head simulations for passive scattering proton therapy. The sensitivities of spread-out Bragg peak (SOBP) dose distributions on material densities, mean ionization potentials, initial proton beam energy spread and spot size were investigated. An improved understanding of the nature of these parameters may help to improve agreement between calculated and measured SOBP dose distributions and to ensure that the range, modulation width, and uniformity are within clinical tolerance levels. Furthermore, we present a method to make small corrections to the uniformity of spread-out Bragg peaks by utilizing the time structure of the beam delivery. In addition, we re-commissioned the models of the two proton treatment heads located at our facility using the aforementioned correction methods presented in this paper.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Terapia com Prótons , Espalhamento de Radiação , Incerteza , Dosagem Radioterapêutica
7.
Int J Radiat Oncol Biol Phys ; 70(1): 253-61, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17967513

RESUMO

PURPOSE: Water equivalent path length (WEL) variations due to respiration can change the range of a charged particle beam and result in beam overshoot to critical organs or beam undershoot to tumor. We have studied range fluctuations by analyzing four-dimensional computed tomography data and quantitatively assessing potential beam overshoot. METHODS AND MATERIALS: The maximal intensity volume is calculated by combining the gross tumor volume contours at each respiratory phase in the four-dimensional computed tomography study. The first target volume calculates the maximal intensity volume for the entire respiratory cycle (internal target volume [ITV]-radiotherapy [RT]), and the second target volume is the maximal intensity volume corresponding to gated RT (gated-RT, approximately 30% phase window around exhalation). A compensator at each respiratory phase is calculated. Two "composite" compensators for ITV-RT and gated-RT are then designed by selecting the minimal compensator depth at the respective respiratory phase. These compensators are then applied to the four-dimensional computed tomography data to estimate beam penetration. Analysis metrics include range fluctuation and overshoot volume, both as a function of gantry angle. We compared WEL fluctuations observed in treating the ITV-RT versus gated-RT in 11 lung patients. RESULTS: The WEL fluctuations were <21.8 mm-WEL and 9.5 mm-WEL for ITV-RT and gated-RT, respectively for all patients. Gated-RT reduced the beam overshoot volume by approximately a factor of four compared with ITV-RT. Such range fluctuations can affect the efficacy of treatment and result in an excessive dose to a distal critical organ. CONCLUSION: Time varying range fluctuation analysis provides information useful for determining appropriate patient-specific treatment parameters in charged particle RT. This analysis can also be useful for optimizing planning and delivery.


Assuntos
Neoplasias Pulmonares/radioterapia , Movimento , Radioterapia Conformacional/métodos , Respiração , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Grandes/patologia , Carcinoma de Células Grandes/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Expiração , Feminino , Humanos , Pulmão , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/instrumentação , Carga Tumoral
8.
Int J Radiat Oncol Biol Phys ; 65(5): 1404-10, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16730137

RESUMO

PURPOSE: The unique dosimetric features of proton radiotherapy make it an attractive modality for normal tissue sparing. We present our initial experience with protons for three-dimensional, conformal, external-beam accelerated partial breast irradiation (3D-CPBI). METHODS AND MATERIALS: From March 2004 to June 2005, 25 patients with tumors < or =2 cm and negative axillary nodes were treated with proton 3D-CPBI. The prescribed dose was 32 Cobalt Gray Equivalents (CGE) in 4 CGE fractions given twice daily. One to three fields were used to provide adequate planning target volume (PTV) coverage and dose homogeneity. RESULTS: Excellent PTV coverage and dose homogeneity were obtained in all patients with one to three proton beams. The median PTV receiving 95% of the prescribed dose was 100%. Dose inhomogeneity exceeded 10% in only 1 patient (4%). The median volume of nontarget breast tissue receiving 50% of the prescribed dose was 23%. Median volumes of ipsilateral lung receiving 20 CGE, 10 CGE, and 5 CGE were 0%, 1%, and 2%, respectively. The contralateral lung and heart received essentially no radiation dose. Cost analysis suggests that proton 3D-CPBI is only modestly more expensive (25%) than traditional whole-breast irradiation (WBI). CONCLUSION: Proton 3D-CPBI is technically feasible, providing both excellent PTV coverage and normal tissue sparing. It markedly reduces the volume of nontarget breast tissue irradiated compared with photon-based 3D-CPBI, addressing a principle disadvantage of external-beam approaches to PBI. As proton therapy becomes more widely available, it may prove an attractive tool for 3D-CPBI.


Assuntos
Neoplasias da Mama/radioterapia , Terapia com Prótons , Radioterapia Conformacional/métodos , Idoso , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Custos e Análise de Custo , Estudos de Viabilidade , Feminino , Coração/efeitos da radiação , Humanos , Pulmão/efeitos da radiação , Pessoa de Meia-Idade , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/economia , Radioterapia Conformacional/economia
9.
Phys Med Biol ; 50(12): 2779-98, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15930602

RESUMO

With the recent availability of 4D-CT, the accuracy of information on internal organ motion during respiration has improved significantly. We investigate the utility of organ motion information in IMRT treatment planning, using an in-house prototype optimization system. Four approaches are compared: (1) planning with optimized margins, based on motion information; (2) the 'motion kernel' approach, in which a more accurate description of the dose deposit from a pencil beam to a moving target is achieved either through time-weighted averaging of influence matrices, calculated for different instances of anatomy (subsets of 4D-CT data, corresponding to various phases of motion) or through convolution of the pencil beam kernel with the probability density function describing the target motion; (3) optimal gating, or tracking with beam intensity maps optimized independently for each instance of anatomy; and (4) optimal tracking with beam intensity maps optimized simultaneously for all instances of anatomy. The optimization is based on a gradient technique and can handle both physical (dose-volume) and equivalent uniform dose constraints. Optimization requires voxel mapping from phase to phase in order to score the dose in individual voxels as they move. The results show that, compared to the other approaches, margin expansion has a significant disadvantage by substantially increasing the integral dose to patient. While gating or tracking result in the best dose conformation to the target, the former elongates treatment time, and the latter significantly complicates the delivery procedure. The 'motion kernel' approach does not provide a dosimetric advantage, compared to optimal tracking or gating, but might lead to more efficient delivery. A combination of gating with the 'motion kernel' or margin expansion approach will increase the duty cycle and may provide one with the most efficient solution, in terms of complexity of the delivery procedure and dose conformality to the target.


Assuntos
Imagens de Fantasmas , Algoritmos , Relação Dose-Resposta à Radiação , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA