Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373403

RESUMO

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Assuntos
Poluentes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análise , Gases/análise , Poluentes Atmosféricos/análise , Análise Espectral , Fotólise
2.
Sci Total Environ ; 892: 164455, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37245820

RESUMO

Hydrogen peroxide (H2O2), hydroxyl radicals (OH), hydroperoxyl (HO2), and superoxide (O2-) radicals interacting with aerosol particles significantly affect the atmospheric pollutant budgets. A multiphase chemical kinetic box model (PKU-MARK), including the multiphase processes of transition metal ions (TMI) and their organic complexes (TMI-OrC), was built to numerically drive H2O2 chemical behaviors in the aerosol particle liquid phase using observational data obtained from a field campaign in rural China. Instead of relying on fixed uptake coefficient values, a thorough simulation of multiphase H2O2 chemistry was performed. In the aerosol liquid phase, light-driven TMI-OrC reactions promote OH, HO2/O2-, and H2O2 recycling and spontaneous regenerations. The in-situ generated aerosol H2O2 would offset gas-phase H2O2 molecular transfer into the aerosol bulk phase and promote the gas-phase level. When combined with the multiphase loss and in-situ aerosol generation involving TMI-OrC mechanism, the HULIS-Mode significantly improves the consistency between modeled and measured gas-phase H2O2 levels. Aerosol liquid phase could be a pivotal potential source of aqueous H2O2 and influence the multiphase budgets. Our work highlights the intricate and significant effects of aerosol TMI and TMI-OrC interactions on the multiphase partitioning of H2O2 when assessing atmospheric oxidant capacity.


Assuntos
Poluentes Atmosféricos , Complexos de Coordenação , Peróxidos , Peróxido de Hidrogênio , Poluentes Atmosféricos/análise , Aerossóis/análise
3.
J Environ Sci (China) ; 123: 140-155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521979

RESUMO

China has put great efforts into air pollution control over the past years and recently committed to its most ambitious climate target. Cost and benefit analysis has been widely used to evaluate the control policies in terms of past performance, future reduction potential, and direct and indirect impacts. To understand the cost and benefit analysis for air pollution control in China, we conducted a bibliometric review of more than 100 studies published over the past two decades, including the current research progress, most commonly adopted methods, and core findings. The control target in cost and benefit analysis has shifted in three stages, from individual and primary pollution control, moving to joint prevention of multiple and secondary pollutants, and then towards synergistic control of air pollution and carbon. With the expansion of the research scope, the integrated assessment model has gradually demonstrated the necessity for long-term ex-anti policy simulation, especially for dealing with complex factors. To ensure long-term air quality, climate, public health, and sustainable economic development, substantial evidence from published studies has suggested that China needs to continue its efforts in the upstream adjustment of the energy system and industrial structure with multi-regional and -sector collaboration. This cost and benefit review paper provides decision-makers with the fundamental information and knowledge gaps in air pollution control strategies in China, and direction for facing future challenges.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Análise Custo-Benefício , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , China , Políticas
4.
Sci Total Environ ; 857(Pt 3): 159592, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36272478

RESUMO

A multiscale analysis of meteorological trends was carried out to investigate the impacts of the large-scale circulation types as well as the local-scale key weather elements on the complex air pollutants, i.e., PM2.5 and O3 in China. Following accompanying papers on synoptic circulation impact and key weather elements and emission contributions (Gong et al., 2022a; Gong et al., 2022b), an emission-driven Observation-based Box Model (e-OBM) was developed to study the impact mechanisms on O3 trend and quantitatively assess the effects of variation in the emissions control over 2013-2020 for Beijing, Chengdu, Guangzhou and Shanghai. Compared with the original OBM, the e-OBM not only improves the performance to simulate the hourly O3 peak concentration in daytime, but also reasonably reproduces the maximum daily 8-hour average (MDA8) O3 concentrations in the four cities. Based upon the sensitivity experiments, it is found that the meteorology is the dominant driver for the MDA8 O3 trend, contributing from about 32 % to 139 % to the variations. From the mechanistic point of view, the variations of meteorology lead to the enhancement of atmospheric oxidation capacity and the acceleration of O3 production. Further evaluation to the emission changes in four cities shows that the O3-precursors relationships of the four cities have been changed from the VOC-limited regime in 2013 to the transition regime or near-transition regime in 2020. Though the NOx/VOCs ratios have been obviously decreased, the emission reductions up to 2020 were still not enough to mitigate O3 pollution in these cities. It is emphasized in this study that the strengthened control measures with maintaining a certain ratio of NOx and VOCs should be implemented to further curb the increasing trend of O3 in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Meteorologia , Monitoramento Ambiental , China , Poluentes Atmosféricos/análise , Material Particulado/análise , Ozônio/análise , Poluição do Ar/análise
5.
Sci Total Environ ; 795: 148869, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328950

RESUMO

Nitrate (NO3) radical is an important oxidant in the atmosphere as it regulates the NOx budget and impacts secondary pollutant formation. Here, a long-term observational dataset of NO3-related species at an urban site in Beijing was used to investigate changes in the NO3 budget and their atmospheric impacts during 2013-2019, in this period the Clean Air Actions Plan was carried out in China. We found that (1) changes in NO3 precursors (NO2 and O3) led to a significant increase in NO3 formation in the surface layer in winter but a decrease in summer; (2) a reduction in NOx promoted thermal equilibrium, favoring the formation of NO3 rather than dinitrogen pentoxide (N2O5). The simultaneous decrease in PM2.5, during these years, further weakened the N2O5 heterogeneous uptake; (3) a box model simulation revealed that both the reactions of NO3 with volatile organic compounds (VOC) and N2O5 uptake were weakened in summer, implying that the policy actions implemented help to moderate secondary aerosol formation caused by NO3 and N2O5 chemistry in summer; and (4) during winter, both NO3 + VOC and N2O5 uptake were enhanced. Specifically, for the N2O5 uptake, the rapid increase in NO3 production, or to some extent, NO3 oxidation capacity, far outweighed the negative shift effect, leading to a net enhancement of N2O5 uptake in winter, which indicates that the action policy implemented led to an adverse effect on particulate nitrate formation via N2O5 uptake in winter. This may explain the persistent winter particulate nitrate pollution in recent years. Our results highlight the systematic changes in the NO3 budget between 2013 and 2019 in Beijing, which subsequently affect secondary aerosol formation in different seasons.


Assuntos
Poluentes Atmosféricos , Nitratos , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Nitratos/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA