Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nanomedicine ; 36: 102416, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147662

RESUMO

The development of atherosclerosis therapy is hampered by the lack of molecular imaging tools to identify the relevant biomarkers and determine the dynamic variation in vivo. Here, we show that a chemokine receptor 2 (CCR2) targeted gold nanocluster conjugated with extracellular loop 1 inverso peptide (AuNC-ECL1i) determines the initiation, progression and regression of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mouse models. The CCR2 targeted 64Cu-AuNC-ECL1i reveals sensitive detection of early atherosclerotic lesions and progression of plaques in ApoE-/- mice. CCR2 targeting specificity was confirmed by the competitive receptor blocking studies. In a mouse model of aortic arch transplantation, 64Cu-AuNC-ECL1i accurately detects the regression of plaques. Human atherosclerotic tissues show high expression of CCR2 related to the status of the disease. This study confirms CCR2 as a useful marker for atherosclerosis and points to the potential of 64Cu-AuNC-ECL1i as a targeted molecular imaging probe for future clinical translation.


Assuntos
Aterosclerose , Meios de Contraste , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/metabolismo , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Modelos Animais de Doenças , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
2.
Circ Cardiovasc Imaging ; 13(3): e009889, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32164451

RESUMO

BACKGROUND: The monocyte chemoattractant protein-1/CCR2 (chemokine receptor 2) axis plays an important role in abdominal aortic aneurysm (AAA) pathogenesis, with effects on disease progression and anatomic stability. We assessed the expression of CCR2 in a rodent model and human tissues, using a targeted positron emission tomography radiotracer (64Cu-DOTA-ECL1i). METHODS: AAAs were generated in Sprague-Dawley rats by exposing the infrarenal, intraluminal aorta to PPE (porcine pancreatic elastase) under pressure to induce aneurysmal degeneration. Heat-inactivated PPE was used to generate a sham operative control. Rat AAA rupture was stimulated by the administration of ß-aminopropionitrile, a lysyl oxidase inhibitor. Biodistribution was performed in wild-type rats at 1 hour post tail vein injection of 64Cu-DOTA-ECL1i. Dynamic positron emission tomography/computed tomography imaging was performed in rats to determine the in vivo distribution of radiotracer. RESULTS: Biodistribution showed fast renal clearance. The localization of radiotracer uptake in AAA was verified with high-resolution computed tomography. At day 7 post-AAA induction, the radiotracer uptake (standardized uptake value [SUV]=0.91±0.25) was approximately twice that of sham-controls (SUV=0.47±0.10; P<0.01). At 14 days post-AAA induction, radiotracer uptake by either group did not significantly change (AAA SUV=0.86±0.17 and sham-control SUV=0.46±0.10), independent of variations in aortic diameter. Competitive CCR2 receptor blocking significantly decreased AAA uptake (SUV=0.42±0.09). Tracer uptake in AAAs that subsequently ruptured (SUV=1.31±0.14; P<0.005) demonstrated uptake nearly twice that of nonruptured AAAs (SUV=0.73±0.11). Histopathologic characterization of rat and human AAA tissues obtained from surgery revealed increased expression of CCR2 that was co-localized with CD68+ macrophages. Ex vivo autoradiography demonstrated specific binding of 64Cu-DOTA-ECL1i to CCR2 in both rat and human aortic tissues. CONCLUSIONS: CCR2 positron emission tomography is a promising new biomarker for the noninvasive assessment of AAA inflammation that may aid in associated rupture prediction.


Assuntos
Aneurisma Roto/diagnóstico , Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/diagnóstico , Regulação da Expressão Gênica , Tomografia por Emissão de Pósitrons/métodos , Receptores CCR2/genética , Aneurisma Roto/genética , Aneurisma Roto/metabolismo , Animais , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores/metabolismo , Fluordesoxiglucose F18/farmacologia , Masculino , Prognóstico , RNA/genética , Compostos Radiofarmacêuticos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores CCR2/biossíntese
3.
ACS Appl Mater Interfaces ; 11(22): 19669-19678, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074257

RESUMO

Nanoparticles have been widely used for preclinical cancer imaging. However, their successful clinical translation is largely hampered by potential toxicity, unsatisfactory detection of malignancy at early stages, inaccurate diagnosis of tumor biomarkers, and histology for imaging-guided treatment. Herein, a targeted copper nanocluster (CuNC) is reported with high potential to address these challenges for future translation. Its ultrasmall structure enables efficient renal/bowel clearance, minimized off-target effects in nontargeted organs, and low nonspecific tumor retention. The pH-dependent in vivo dissolution of CuNCs affords minimal toxicity and potentially selective drug delivery to tumors. The intrinsic radiolabeling through the direct addition of 64Cu to CuNC (64Cu-CuNCs-FC131) synthesis offers high specific activity for sensitive and accurate detection of CXCR4 via FC131-directed targeting in novel triple negative breast cancer (TNBC) patient-derived xenograft mouse models and human TNBC tissues. In summary, this study not only reveals the potential of CXCR4-targeted 64Cu-CuNCs for TNBC imaging in clinical settings, but also provides a useful strategy to design and assess the translational potential of nanoparticles for cancer theranostics.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Cobre/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Cobre/efeitos adversos , Radioisótopos de Cobre/química , Feminino , Humanos , Camundongos , Nanopartículas/efeitos adversos , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons , Receptores CXCR4/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem
4.
ACS Appl Mater Interfaces ; 11(17): 15316-15321, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969098

RESUMO

Nanoparticles have been assessed in preclinical models of atherosclerosis for detection of plaque complexity and treatment. However, their successful clinical translation has been hampered by less than satisfactory plaque detection and lack of a general strategy for assessing the translational potential of nanoparticles. Herein, nanoparticles based on comb-co-polymer assemblies were synthesized through a modular construction approach with precise control over the conjugation of multiple functional building blocks for in vivo evaluation. This high level of design control also allows physicochemical properties to be varied in a controllable fashion. Through conjugation of c-atrial natriuretic factor (CANF) peptide and radiolabeling with 64Cu, the 64Cu-CANF-comb nanoparticle was assessed for plaque imaging by targeting natriuretic peptide clearance receptor (NPRC) in a double-injury atherosclerosis model in rabbits. The prolonged blood circulation and enhanced binding capacity of 64Cu-CANF-comb nanoparticles provided sensitive and specific imaging of NPRC overexpressed in atherosclerotic lesions by positron emission tomography at intervals during the progression of the disease. Ex vivo tissue validation using autoradiography and immunostaining on human carotid endarterectomy specimens demonstrated specific binding of 64Cu-CANF-comb to human NPRC receptors. Taken together, this study not only shows the potential of NPRC-targeted 64Cu-CANF-comb nanoparticles for increased sensitivity to an epitope that increases during atherosclerosis plaque development but also provides a useful strategy for the general design and assessment of the translational potential of nanoparticles in cardiovascular imaging.


Assuntos
Nanopartículas/química , Tomografia por Emissão de Pósitrons , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Fator Natriurético Atrial/química , Fator Natriurético Atrial/metabolismo , Radioisótopos de Cobre/química , Modelos Animais de Doenças , Artéria Femoral/diagnóstico por imagem , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Coelhos , Compostos Radiofarmacêuticos/química , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA