Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132377, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639790

RESUMO

Harvesting aquatic harmful algal blooms (HABs) and reusing them is a promising way for antibiotic degradation. Herein, a novel iron-rich biochar (Fe-ABC), derived from algal biomass harvested by magnetic coagulation, was successfully designed and fabricated as activator for heterogeneous Fenton-like reaction. The modification methods and pyrolysis temperatures (400-800 °C) were optimized to enhance the formation of rich iron species and moderately defective structure, yielding Fe-ABC-600 with enhanced electron transfer and H2O2 activation capability. Thus, Fe-ABC-600 exhibited superior removal efficiency (95.33%) on tetracycline (TC), where the presence of multiple iron species (Fe3+, Fe2+ and Fe4+) and moderately defective structure accelerating the Fenton-like oxidation. The concentration of leaching Fe after each reaction was all below 0.74 mg/L in five cycles, ensuring the sustained degradation. And •OH was proved to be the major radical contributing to the degradation of TC, as well as the direct electron transfer mechanism together, in which the CO acted as electron regulator and electron donor. Fe-ABC as a cost-effective catalyst has notable application potentials in TC removal from wastewater owing to its remarkable advantages of high resource utilization, enhanced catalytic property, high ecological safe, notable TC degradation efficiency, low cost and environmental-friendliness.


Assuntos
Peróxido de Hidrogênio , Tetraciclina , Análise Custo-Benefício , Antibacterianos , Ferro
2.
Bioresour Technol ; 361: 127717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926559

RESUMO

Modified biochar is a feasible adsorbent to solve cadmium pollution in water. However, few studies could elucidate the mechanism of cadmium adsorption by biochar from a molecular perspective. Furthermore, traditional modification methods are costly and have the risk of secondary contamination. Hence, several environmentally friendly sodium salts were used to modify the water chestnut shell-based biochar and employ it in the Cd2+ adsorption in this work. The modification of sodium salt could effectively improve the specific surface area and aromaticity of biochar. Na3PO4 modified biochar exhibited the highest Cd2+ adsorption capacity (112.78 mg/g). The adsorption of Cd2+ onto biochar was an endothermic, monolayer, chemisorption process accompanied by intraparticle diffusion. Microscopically, the enhancement of aromatization after modification made Cd2+ more likely to interact with the regions rich in π electrons and lone pair electrons. This study provided a new research perspective and application guidance for heavy metal adsorption on biochar.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Sais , Sódio , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 330: 124949, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725520

RESUMO

NaHCO3 was used as a novel activator to produce cassava ethanol sludge-based biochar. The NaHCO3-activated biochar showed superior adsorption capacity for tetracycline (154.45 mg/g) than raw biochar (34.04 mg/g). Orthogonal experiments confirmed the optimal preparation conditions of biochar. Increasing adsorbent dosage and temperature facilitated tetracycline removal. The maximum removal was 92.60% at pH = 3.0. Calcium ions and alkalinity decreased tetracycline removal. The time for attaining equilibrium was extended with increasing tetracycline concentration, but the equilibrium could be completed within 24 h. Langmuir model fitted the equilibrium data well. Kinetics process followed the Elovich model. The adsorption rate was controlled by both intraparticle and liquid film diffusion and the process was endothermic and spontaneous. The electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling were involved in the adsorption mechanism. The findings may provide an underlying guide for sludge disposal and removal of tetracycline from wastewater in practical application.


Assuntos
Manihot , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Etanol , Cinética , Esgotos , Bicarbonato de Sódio , Tetraciclina , Poluentes Químicos da Água/análise
4.
Chemosphere ; 155: 358-366, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27135697

RESUMO

To investigate characteristics of water-extractable organic matter (WEOM) from different stages and evaluate the maturity for co-composting penicillin mycelial dreg (PMD) via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a pilot-scale co-composting was carried out. The results showed that a classical temperature profile showed and a degradation rate of 98.1% for residual penicillin was obtained on the 6th day. DOC and DOC/DON ratio were in a low level of 4.0 g kg(-1) and 3.7, respectively, after the 32nd day. In addition, respirometric rate (SOUR) decreased to 0.87 mg O2 g(-1) VS h(-1) finally. The EEM showed that the specific Ex/Em peak related to microbial byproduct-like vanished on the 32nd day, while those related to fulvic-like and humic acid-like appearing on the 24th day. The fluorescence regional integration (FRI) results demonstrated that PV,n/PIII,n increased to 3.28 finally, suggesting a desirable maturity for co-composting PMD. The EEM-FRI consequently has the potential for characterizing the WEOM from the co-composting of PMD.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fluorescência , Substâncias Húmicas/análise , Compostos Orgânicos/química , Penicilinas/química , Eliminação de Resíduos/métodos , Água/química , Compostos Orgânicos/isolamento & purificação , Espectrometria de Fluorescência/métodos , Temperatura , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA