RESUMO
Glyphosate is widely used in agriculture for weed control; however, it may pollute water systems with its by-product, aminomethylphosphonic acid (AMPA). Therefore, a better understanding of the flows of glyphosate and AMPA from soils into rivers is required. We developed the spatially explicit MARINA-Pesticides model to estimate the annual inputs of glyphosate and AMPA into rivers, considering 10 crops in 10,226 sub-basins globally for 2020. Our model results show that, globally, 880 tonnes of glyphosate and 4,090 tonnes of AMPA entered rivers. This implies that 82 % of the river inputs were from AMPA, with glyphosate accounting for the remainder. Over half of AMPA and glyphosate in rivers globally originated from corn and soybean production; however, there were differences among sub-basins. Asian sub-basins accounted for over half of glyphosate in rivers globally, with the contribution from corn production being dominant. South American sub-basins accounted for approximately two-thirds of AMPA in rivers globally, originating largely from soybean production. Our findings constitute a reference for implementing and supporting effective control strategies to achieve Sustainable Development Goals 2 and 6 (food production and clean water, respectively) simultaneously in the future.
Assuntos
Glycine max , Glicina , Glifosato , Rios , Poluentes Químicos da Água , Zea mays , Glicina/análogos & derivados , Glicina/análise , Rios/química , Poluentes Químicos da Água/análise , Herbicidas/análise , Organofosfonatos/análise , Monitoramento Ambiental , AgriculturaRESUMO
Objective: Hashimoto's thyroiditis is an inflammatory disease, and research suggests that a low-carbohydrate diet may have potential anti-inflammatory effects. This study aims to utilize Dixon-T2-weighted imaging (WI) sequence for a semi-quantitative assessment of the impact of a low-carbohydrate diet on the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Methods: Forty patients with Hashimoto's thyroiditis were recruited for this study and randomly divided into two groups: one with a normal diet and the other with a low-carbohydrate diet. Antibodies against thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) were measured for all participants. Additionally, thyroid water content was semi-quantitatively measured using Dixon-T2WI. The same tests and measurements were repeated for all participants after 6 months. Results: After 6 months of a low-carbohydrate diet, patients with Hashimoto's thyroiditis showed a significant reduction in thyroid water content (94.84 ± 1.57% vs 93.07 ± 2.05%, P < 0.05). Concurrently, a decrease was observed in levels of TPOAb and TgAb (TPOAb: 211.30 (92.63-614.62) vs 89.45 (15.9-215.67); TgAb: 17.05 (1.47-81.64) vs 4.1 (0.51-19.42), P < 0.05). In contrast, there were no significant differences in thyroid water content or TPOAb and TgAb levels for patients with Hashimoto's thyroiditis following a normal diet after 6 months (P < 0.05). Conclusion: Dixon-T2WI can quantitatively assess the degree of thyroid inflammation in patients with Hashimoto's thyroiditis. Following a low-carbohydrate diet intervention, there is a significant reduction in thyroid water content and a decrease in levels of TPOAb and TgAb. These results suggest that a low-carbohydrate diet may help alleviate inflammation in patients with Hashimoto's thyroiditis.
RESUMO
Background: Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods: 3D spheroids were exposed to 25-100 µg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-ß-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results: Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-ß-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-ß1/Smad3 axis and HMGB1 pathway. Conclusions: Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.
RESUMO
With the increase of organic solid wastes (OSWs), current waste management practices, such as landfill, incineration, and windrow composting, have shown weaknesses in both resource recycling and environmental protection. Co-composting has been used to achieve nutrient and carbon recycling but is accused of high ammonia emission and low degradation efficiency. Therefore, this study developed a precision co-composting strategy (S3, which adds functional bacteria generated from food processing waste to a co-composting system) and compared it with the current OSW treatment strategy (S1) and traditional co-composting strategy (S2) from a life cycle assessment (LCA) perspective. The results showed that compared with S1, the eco-efficiency increased by 31.3% due to the higher economic profit of S2 but did not directly reduce the environmental cost. The addition of bacterial agents reduced ammonia emissions and shortened composting time, so compared with S1 and S2, the environmental cost of S3 was reduced by 37.9 and 43.6%, while the economic profit increased by 79.8 and 24.4%, respectively. The changes in environmental costs and economic benefits resulted in a huge improvement of S3's eco-efficiency, which was 189.6 and 121.7% higher than S1 and S2. Meanwhile, the adoption of S3 at a national scale in China could reduce the emission of 1,4-dichlorobenzene by 99.9% compared with S1 and increase profits by 6.58 billion USD per year. This study proposes a novel approach that exhibits high eco-efficiency in the treatment of OSWs.
RESUMO
This study addresses the critical need for regional tourism integration and sustainable development by identifying cooperation opportunities among tourist attractions within a region. We introduce a novel methodology that combines association rule mining with complex network analysis and utilizes search index data as a dynamic and contemporary data source to reveal cooperative patterns among tourist attractions. Our approach delineates a potential cooperative network within the destination ecosystem, categorizing tourist attractions into three distinct communities: core, intermediary, and periphery. These communities correspond to high, medium, and low tourist demand scales, respectively. The study uncovers a self-organizing network structure, driven by congruences in internal tourist demand and variances in external tourist experiences. Functionally, there is a directed continuum of cooperation prospects among these communities. The core community, characterized by significant tourist demand, acts as a catalyst, boosting demand for other attractions. The intermediary community, central in the network, links the core and periphery, enhancing cooperative ties and influence. Peripheral attractions, representing latent growth areas within the destination matrix, benefit from associations with the core and intermediary communities. Our findings provide vital insights into the dynamics, systemic characteristics, and fundamental mechanisms of potential cooperation networks among tourist attractions. They enable tourism management organizations to employ our analytical framework for real-time monitoring of tourism demand and flow trends. Additionally, the study guides the macro-control of tourism flows based on the tourism network, thereby improving the tourist experience and promoting coordinated development among inter-regional tourist attractions.
Assuntos
Ecossistema , Viagem , Turismo , Desenvolvimento SustentávelRESUMO
With global warming becoming increasingly severe, environmental issues are receiving international attention. Crystalline silicon is an indispensable and important raw material for photovoltaic and semiconductor fields, but the cutting of crystalline silicon materials generates a large amount of silicon wastes. This article evaluates the environmental impact of a hydrogen production process using diamond-wire sawing silicon waste (DSSW) using the life cycle assessment (LCA) methodology. For comparison, it was also analyzed the environmental impact of the alkaline water electrolysis (AEL) hydrogen production route. In the DSSW alkaline catalyzed hydrolysis (DACH) hydrogen production route, the hydrogen production stage accounts for the main contribution of nine environmental impact indexes, including GWP, PED, ADP, AP, EP, ODP, ET, HT-cancer, and HT-non cancer, exceeding 56 %. Whereas for the AEL route, the environmental impacts of the electrolytic cell manufacturing stage can be neglected, and the operating stage contributes almost all the environmental impacts, contributing more than 92 % to the twelve environmental impact indexes. Compared to the AEL route, the DACH route has higher environmental impacts, with GWP index reaching 87.78 kg CO2 -eq/kg H2, PED index reaching 1772.90 MJ/kg H2, and IWU index reaching 622.37 kg/kg H2 which are 2.85, 4.07 and 7.56 times higher than the former, respectively. Although the environmental impact of the DACH route is significant, most of its indirect impacts were caused by the use of raw materials, and the energy consumption and direct environmental impact are both low. The environmental impact of the AEL route is mainly indirect effects generated due to the use of electricity. If clean renewable energy sources (e.g., solar PV, hydropower, geothermal or biofuels), were used for the AEL route, all twelve environmental impact indexes would be significantly reduced.
RESUMO
The International Society of AD (ISAD) organized a roundtable on global aspects of AD at the WCD 2023 in Singapore. According to the Global Burden of Disease (GBD) consortium, at least 171 million individuals were affected with AD in 2019, corresponding to 2.23% of the world population, with age-standardized prevalence and incidence rates that were relatively stable from 1990 to 2019. Based on the panel experience, most AD cases are mild-to-moderate. Without parallel data on disease prevalence and severity, the GBD data are difficult to interpret in many regions. This gap is particularly important in countries with limited medical infrastructure, but indirect evidence suggests a significant burden of AD in low-and-medium resource settings, especially urban areas. The Singapore roundtable was an opportunity to compare experiences in World Bank category 1 (Madagascar and Mali), 3 (Brazil, China) and 4 (Australia, Germany, Qatar, USA, Singapore, Japan) countries. The panel concluded that current AD guidelines are not adapted for low resource settings and a more pragmatic approach, as developed by WHO for skin NTDs, would be advisable for minimal access to moisturizers and topical corticosteroids. The panel also recommended prioritizing prevention studies, regardless of the level of existing resources. For disease long-term control in World Bank category 3 and most category 4 countries, the main problem is not access to drugs for most mild-to-moderate cases, but rather poor compliance due to insufficient time at visits. Collaboration with WHO, patient advocacy groups and industry may promote global change, improve capacity training and fight current inequalities. Finally, optimizing management of AD and its comorbidities needs more action at the primary care level, because reaching specialist care is merely aspirational in most settings. Primary care empowerment with store and forward telemedicine and algorithms based on augmented intelligence is a future goal.
Assuntos
Dermatite Atópica , Saúde Global , Humanos , Dermatite Atópica/epidemiologia , Dermatite Atópica/terapia , Prevalência , Carga Global da Doença , Singapura/epidemiologiaRESUMO
BACKGROUND: Many countries and regions have experienced male fertility problems due to various influencing factors, especially in less developed countries. Unlike female infertility, male infertility receives insufficient attention. Understanding the changing patterns of male infertility in the world, different regions and different countries is crucial for assessing the global male fertility and reproductive health. METHODS: We obtained data on prevalence, years of life lived with disability (YLD), age-standardized rates of prevalence (ASPR) and age-standardized YLD rate (ASYR) from the Global Burden of Disease Study 2019. We analyzed the burden of male infertility at all levels, including global, regional, national, age stratification and Socio-demographic Index (SDI). RESULTS: In 2019, the global prevalence of male infertility was estimated to be 56,530.4 thousand (95% UI: 31,861.5-90,211.7), reflecting a substantial 76.9% increase since 1990. Furthermore, the global ASPR stood at 1,402.98 (95% UI: 792.24-2,242.45) per 100,000 population in 2019, representing a 19% increase compared to 1990. The regions with the highest ASPR and ASYR for male infertility in 2019 were Western Sub-Saharan Africa, Eastern Europe, and East Asia. Notably, the prevalence and YLD related to male infertility peaked in the 30-34 year age group worldwide. Additionally, the burden of male infertility in the High-middle SDI and Middle SDI regions exceeded the global average in terms of both ASPR and ASYR. CONCLUSION: The global burden of male infertility has exhibited a steady increase from 1990 to 2019, as evidenced by the rising trends in ASPR and ASYR, particularly in the High-middle and Middle SDI regions. Notably, the burden of male infertility in these regions far exceeds the global average. Additionally, since 2010, there has been a notable upward trend in the burden of male infertility in Low and Middle-low SDI regions. Given these findings, it is imperative to prioritize efforts aimed at improving male fertility and reproductive health.
Assuntos
Pessoas com Deficiência , Infertilidade Masculina , Humanos , Masculino , Feminino , Carga Global da Doença , Prevalência , Europa Oriental , Saúde Global , Infertilidade Masculina/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , IncidênciaRESUMO
Transparent soil (TS) was specifically designed to support root growth in the presence of air, water, and nutrients and allowed the time-resolved phenotyping of roots in vivo. Nevertheless, it is imperative to further optimize the reagent cost of TS to enable its wider utilization. We substituted the costly Phytagel obtained from Sigma with two more economical alternatives, namely Biodee and Coolaber. TS beads from each brand were prepared using 12 different polymer concentrations and seven distinct crosslinker concentrations. A comprehensive assessment encompassing transparency, mechanical characteristics, particle size, porosity, and stability of TS was undertaken. Compared to the Sigma Phytagel brand, both Biodee and Coolaber significantly reduced the transparency and collapse stress of the TS they produced. Consequently, this led to a significant reduction in the allowable width and height of the growth box, although they could still simultaneously exceed 20 cm and 19 cm. There was no notable difference in porosity and stability among the TS samples prepared using the three Phytagel brands. Therefore, it is feasible to consider replacing the Phytagel brand to reduce TS production costs. This study quantified the differences in TS produced using three Phytagel brands at different prices that will better promote the application of TS to root phenotypes.
RESUMO
The current regulatory site investigation employs the J&E model to predict vapor intrusion risk. However, the J&E model assumes that the source concentration is constant for a given exposure period, which is not consistent with the actual site source under depletion. In this study, we compared the differences between the J&E model (constant source), SD source depletion model, and RBCA source depletion model for predicting indoor concentration variation as well as the risk levels during the exposure period with a case study in Beijing. The results showed that the source and indoor air concentrations predicted by the SD and RBCA models showed exponential decreases, whereas those predicted by the J&E model maintained high concentrations throughout the exposure period, which greatly overestimated the risk. The RBCA predicted source depletion at the fastest rate, but the predicted indoor air concentrations were still lower than those of the SD model, which was related to the fact that the RBCA did not consider the effect of buildings on source depletion and did not follow mass conservation. Further, the sensitivity analysis showed that the pressure difference (dP) had the greatest influence on the source concentration in the SD model. For the calculated carcinogenic risk and hazard quotients, the J&E constant source model, the SD source depletion model, and the RBCA source depletion model were ranked in descending order. The results indicated that in general the J&E model was too conservative, the RBCA model may have underestimated risk, and the SD model was more suitable for quantifying vapor intrusion risk in reality.
RESUMO
Introduction: Major Depressive Disorder (MDD) is a leading cause of worldwide disability, and standard clinical treatments have limitations due to the absence of neurological evidence. Electroencephalography (EEG) monitoring is an effective method for recording neural activities and can provide electroneurophysiological evidence of MDD. Methods: In this work, we proposed a probabilistic graphical model for neural dynamics decoding on MDD patients and healthy controls (HC), utilizing the Hidden Markov Model with Multivariate Autoregressive observation (HMM-MAR). We testified the model on the MODMA dataset, which contains resting-state and task-state EEG data from 53 participants, including 24 individuals with MDD and 29 HC. Results: The experimental results suggest that the state time courses generated by the proposed model could regress the Patient Health Questionnaire-9 (PHQ-9) score of the participants and reveal differences between the MDD and HC groups. Meanwhile, the Markov property was observed in the neuronal dynamics of participants presented with sad face stimuli. Coherence analysis and power spectrum estimation demonstrate consistent results with the previous studies on MDD. Discussion: In conclusion, the proposed HMM-MAR model has revealed its potential capability to capture the neuronal dynamics from EEG signals and interpret brain disease pathogenesis from the perspective of state transition. Compared with the previous machine-learning or deep-learning-based studies, which regarded the decoding model as a black box, this work has its superiority in the spatiotemporal pattern interpretability by utilizing the Hidden Markov Model.
RESUMO
Objective: This study aims to identify relevant risk factors, assess the interactions between variables, and establish a predictive model for ischemic stroke (IS) in patients with cardiac myxoma (CM) using the Bayesian network (BN) approach. Methods: Data of patients with CM were collected from three tertiary comprehensive hospitals in Beijing from January 2002 to January 2022. Age, sex, medical history, and information related to CM were extracted from the electronic medical record system. The BN model was constructed using the tabu search algorithm, and the conditional probability of each node was calculated using the maximum likelihood estimation method. The probability of each node of the network and the interrelationship between IS and its related factors were qualitatively and quantitatively analyzed. A receiver operating characteristic (ROC) curve was also plotted. Sensitivity, specificity, and area under the curve (AUC) values were calculated and compared between the BN and logistic regression models to evaluate the efficiency of the predictive model. Results: A total of 416 patients with CM were enrolled in this study, including 61 with and 355 without IS. The BN model found that cardiac symptoms, systemic embolic symptoms, platelet counts, and tumor with high mobility were directly associated with the occurrence of IS in patients with CM. The BN model for predicting CM-IS achieved higher scores on AUC {0.706 [95% confidence interval (CI), 0.639-0.773]} vs. [0.697 (95% CI, 0.629-0.766)] and sensitivity (99.44% vs. 98.87%), but lower scores on accuracies (85.82% vs. 86.06%) and specificity (6.56% vs. 11.48%) than the logistic regression model. Conclusion: Cardiac symptoms, systemic embolic symptoms, platelet counts, and tumor with high mobility are candidate predictors of IS in patients with CM. The BN model was superior or at least non-inferior to the traditional logistic regression model, and hence is potentially useful for early IS detection, diagnosis, and prevention in clinical practice.
RESUMO
BACKGROUND: Atherosclerotic acute carotid occlusion is a specific type of stroke, and controversy exists regarding the surgical strategy, that is, whether an internal carotid artery stent should be placed immediately after opening the occluded vessel. There is no objective evaluation system for this procedure. In a previous study, we summarized an evaluation decision system Emergent Carotid Artery Stent placement decision Evaluation System (ECASES) for emergency stent placement. STUDY DESIGN: This is a prospective, single-center, randomized controlled trial. Patients with acute ischemic stroke caused by atherosclerotic carotid artery occlusion confirmed by imaging (computed tomography/magnetic resonance angiography/digital subtraction angiography) will be randomly divided into the study and control groups, with 101 patients in each group. The study group will undergo surgery according to the ECASES system and the control group will undergo surgery according to the operator's experience. The postoperative outcomes of the 2 groups will be compared. STUDY OUTCOMES: Primary outcome: Neurological functional status (modified Rankin Scale and National Institutes of Health Stroke Scale scores) of patients 90 days postoperatively. Secondary outcomes: neurological function changes, hemorrhage events, cerebral edema, postoperative modified treatment in cerebral infarction grade, new cerebral infarction, and reocclusion of responsible vessels. DISCUSSION: Currently, no prospective controlled data exist regarding the efficacy and safety of carotid stenting in the acute phase. Previously, we had developed an ECASES stent placement system for acute carotid artery occlusion. The present study will evaluate the efficacy and safety of ECASES in a randomized, double-blind prospective study and clarify its guiding significance in acute atherosclerotic carotid artery occlusion surgery.
Assuntos
Doenças das Artérias Carótidas , AVC Isquêmico , Acidente Vascular Cerebral , Estados Unidos , Humanos , Estudos Prospectivos , Stents , Angiografia Digital , Infarto Cerebral , Acidente Vascular Cerebral/etiologiaRESUMO
This study aims to explore the soil fertility in the main Artemisia argyi planting areas in Qichun county.To be specific, the soil physical and chemical properties in the main planting areas of A.argyi in Qichun county were analyzed.On this basis, 12 indexes were selected for principal component analysis(PCA) which was then combined with the norm value of each index and the correlation coefficients between the indexes to establish the minimum data set(MDS).The radar map was plotted to directly demonstrate the level of each index and the comprehensive level of the sampling sites.The comprehensive index model was used to calculate the soil fertility quality index(SFQI) of the total data set(TDS) and MDS(SFQI-TDS and SFQI-MDS, respectively), and linear regression of the two was performed.The results showed that the indexes that made up the MDS for soil fertility evaluation were pH, available potas-sium, available iron, available zinc, available manganese, available copper, and available magnesium.The radar map suggested the greatest difference in soil organic matter and smallest difference in available nitrogen among the 14 sampling sites.Moreover, the overall content of available phosphorus and available iron was high, while that of available nitrogen was the lowest.The SFQI-MDS which was yielded based on the weight of each index in MDS calculated with the norm value was more sensitive and the SFQI had stronger correlation with TDS-SFQI, which can better represent TDS-SFQI.SFQI-MDS was in the range of 0.298-0.784, with the average of 0.565 and variation coefficient of 18.38%.Caohe Town had the highest average SFQI-MDS.Clustering of SFQI-MDS value suggested that the soil fertility can be classified into 4 levels: level â (SFQI ≥ 0.677) indicated excellent soil fertility, which accounted for 11.24%(mainly in Qingshi town, Balihu, and Zhangbang town); level â ¡(0.571≤SFQI≤0.680) meant good fertility, which made up 43.82%(mainly in Caohe town, Hengche town, and Pengsi town); level â ¢(0.466≤SFQI≤0.557) indicated average fertility, which took up 32.58%(mainly in Chidong town and Zhulin town); level â £(SFQI≤0.421) suggested poor fertility, which accounted for 12.36%(mainly in Guanyao town).It is recommended that nitrogen, potassium, magnesium, and calcium fertilizers should be increased and organic ferti-lizer should be applied for the cultivation of A.argyi in Qichun county to improve soil fertility and soil physical and chemical properties.
Assuntos
Artemisia , Solo , Artemisia/química , Ferro , Magnésio , Nitrogênio/análise , Fósforo , Solo/químicaRESUMO
In lower-income countries, the economic contractions that accompany lockdowns to contain COVID-19 transmission can increase child mortality, counteracting the mortality reductions achieved by the lockdown. To formalize and quantify this effect, we build a macrosusceptible-infected-recovered model that features heterogeneous agents and a country-group-specific relationship between economic downturns and child mortality and calibrate it to data for 85 countries across all income levels. We find that in some low-income countries, a lockdown can produce net increases in mortality. The optimal lockdown that maximizes the present value of aggregate social welfare is shorter and milder in poorer countries than in rich ones.
RESUMO
Increasing pesticide use pollutes Chinese surface waters. Pesticides often enter waters through surface runoff from agricultural fields. This occurs especially during heavy rainfall events. Socio-economic development and climate change may accelerate future loss of pesticides to surface waters due to increasing food production and rainfall events. The main objective of this study is to model past and future pesticide losses to Chinese waters under socio-economic development and climate change. To this end, we developed a pesticide model with local information to quantify the potential pesticide runoff from near-stream agriculture to surface waters after heavy rainfall. We project future trends in potential pesticide runoff. For this, we developed three scenarios: Sustainability, "Middle of the Road" and Economy-first. These scenarios are based on combined Shared Socio-economic Pathways and Representative Concentration Pathways. We identified hotspots with high potential pesticide runoff. The results show that the potential pesticide runoff increased by 45% from 2000 to 2010, nationally. Over 50% of the national pesticide runoff in 2000 was in five provinces. Over 60% of the Chinese population lived in pesticide polluted hotspots in 2000. For the future, trends differ among scenarios and years. The largest increase is projected for the Economy-first scenario, where the potential pesticide runoff is projected to increase by 85% between 2010 and 2099. Future pesticide pollution hotspots are projected to concentrate in the south and south-east of China. This is the net-effect of high pesticide application, intensive crop production and high precipitation due to climate change. In our scenarios, 58%-84% of the population is projected to live in pesticide polluted hotspots from 2050 onwards. These projections can support the development of regional management strategies to control pesticide pollution in waters in the future.
Assuntos
Praguicidas , Agricultura/métodos , Mudança Climática , Praguicidas/análise , Rios , Fatores SocioeconômicosRESUMO
The partitioning of volatile organic compounds (VOCs) in soil multiphase system is a critical process for vapour intrusion, however, the importance of vapour-solid interface adsorption doesn't receive the due attention, which causes the exposure assessment too conservative particularly in arid conditions. This paper proposed a multiphase partitioning equilibrium (MPE) model establishing the quantitative relationship between VOCs and its various partitioning phases in soil, including solid-liquid interface adsorption phase, vapour phase and dissolved phase and vapour-solid interface adsorption phase. Taking benzene as the targeted pollutant, the model was found in good agreement with the experimental data while the errors were within one magnitude basically. The role of vapour-solid interface adsorption under different soil moisture conditions was also investigated by the model. The results reveals that a) soil moisture is the conspicuous controlling factor that affects the benzene partitioning in soil; b) vapour-solid interface adsorption dominates benzene uptake when soil relative saturation (RS) is under 20% among three typical soils; c) as adsorption by soil minerals (vapour-solid interface adsorption) is reduced by increasing amounts of humidity (RS > 20%), uptake by partitioning into the soil organic matter (OM) increasingly becomes a controlling factor; d) the common sense that vapour concentration of benzene is particularly high with low level of RS may not occur since the vapour-solid interface adsorption dominates benzene uptake in arid environment. The MPE model is suitable for prediction of VOCs partitioning and vapour exposure risk assessment of contaminated soil in arid area.
Assuntos
Poluentes do Solo , Compostos Orgânicos Voláteis , Adsorção , Benzeno , Poluição Ambiental , Gases , Solo , Poluentes do Solo/análiseRESUMO
OBJECTIVE: To evaluate the safety of initiating and maintaining propranolol therapy for infantile hemangioma (IH) and the safety of different doses. METHODS: The retrospective analysis included 336 consecutive cases of infants with IH treated between January 2016 and October 2017. The patients were assessed in the hospital at the initiation of the therapy and later in outpatient settings during the therapy. The monitoring included blood pressure (BP), heart rate (HR), blood glucose, hepatic and renal function, myocardial enzymes and serum lipids. Cardiac examinations in the outpatient follow-up included electrocardiography, ultrasound echocardiography, height, weight and head circumference. RESULTS: Propranolol decreased BP and HR at the initiation of treatment. The incidences of sinus bradycardia and hypoglycemia increased with the time of administration. Mean height, weight and head circumference were not affected during the treatment. The incidence of PR prolongation was 0%-5.7%. The effect of propranolol on the cardiovascular system, metabolism and physical development was not affected by its dose. CONCLUSION: Oral propranolol is a safe treatment for IH. Serious side effects were not observed. Attention should be paid to the side effects during clinical treatment.
Assuntos
Hemangioma , Neoplasias Cutâneas , Administração Oral , Antagonistas Adrenérgicos beta/efeitos adversos , Hemangioma/tratamento farmacológico , Humanos , Lactente , Propranolol/efeitos adversos , Estudos Retrospectivos , Neoplasias Cutâneas/tratamento farmacológico , Resultado do TratamentoRESUMO
Growing demand for intensive animal farms and increased public awareness of environmental friendliness, have led to continuous iteration and refinement of the initially crude composting technology. However, the impact of the composting facility and energy input on eco-efficiency is limited. In this study, a LCA approach was conducted to investigate the eco-efficiency of four widely applied composting strategies: static heaps (SH), windrow composting (WC), membrane-covered composting (MC) and reactor composting (RC). The results showed that the environmental benefits of RC's were decreased by 11.3%, 21.7%, and 6.5% compared to SH, WC, and MC, respectively. Advanced composting technologies didn't substantially reduce direct economic costs, however, the eco-efficiency of RC was increased by 296.9%, 54.7%, and 87.6% compared to SH, WC, and MC, respectively. Overall, the results demonstrate that RC is a promising solution with high ecological efficiency that can contribute to the sustainable development of intensified livestock production.
Assuntos
Compostagem , Animais , Estágios do Ciclo de Vida , TecnologiaRESUMO
China feeds 19.1% of the world's population with 8.6% of the arable land. Here we propose an integrated approach combining crop redistribution and improved management to meet China's food demand in 2030. We simulated the food demand, estimated the national crop production through the productivity of the top 10% of producers in each county, and optimized the spatial distribution of 11 groups of crop types among counties using the data of the top producers. Integrating crop redistribution and improved management increased crop production and can meet the food demand in 2030, while the agricultural inputs (N and P fertilizers and irrigation water) and environmental impacts (reactive N loss and greenhouse gas emissions) were reduced. Although there are significant socio-economic and cultural barriers to implementing such redistribution, these results suggest that integrated measures can achieve food security and decrease negative environmental impacts. County-specific policies and advisory support will be needed to achieve the promises of combining optimization strategies.