Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virchows Arch ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202567

RESUMO

Demand for large-scale tumour profiling across cancer types has increased in recent years, driven by the emergence of targeted drug therapies. Analysing alternations in plasma circulating tumour DNA (ctDNA) for cancer detection can improve survival; ctDNA testing is recommended when tumour tissue is unavailable. An online survey of molecular pathology testing was circulated by six external quality assessment members of IQN Path to registered laboratories and all IQN Path collaborative corporate members. Data from 275 laboratories across 45 countries were collected; 245 (89%) perform molecular pathology testing, including 177 (64%) which perform plasma ctDNA diagnostic service testing. The most common tests were next-generation sequencing-based (n = 113). Genes with known stratified treatment options, including KRAS (n = 97), NRAS (n = 84), and EGFR (n = 130), were common targets. The uptake of ctDNA plasma testing and plans to implement further testing demonstrates the importance of support from a well-designed EQA scheme.

2.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32217756

RESUMO

BACKGROUND: Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, demonstrates predictive biomarker potential for the identification of patients with cancer most likely to respond to immune checkpoint inhibitors. TMB is optimally calculated by whole exome sequencing (WES), but next-generation sequencing targeted panels provide TMB estimates in a time-effective and cost-effective manner. However, differences in panel size and gene coverage, in addition to the underlying bioinformatics pipelines, are known drivers of variability in TMB estimates across laboratories. By directly comparing panel-based TMB estimates from participating laboratories, this study aims to characterize the theoretical variability of panel-based TMB estimates, and provides guidelines on TMB reporting, analytic validation requirements and reference standard alignment in order to maintain consistency of TMB estimation across platforms. METHODS: Eleven laboratories used WES data from The Cancer Genome Atlas Multi-Center Mutation calling in Multiple Cancers (MC3) samples and calculated TMB from the subset of the exome restricted to the genes covered by their targeted panel using their own bioinformatics pipeline (panel TMB). A reference TMB value was calculated from the entire exome using a uniform bioinformatics pipeline all members agreed on (WES TMB). Linear regression analyses were performed to investigate the relationship between WES and panel TMB for all 32 cancer types combined and separately. Variability in panel TMB values at various WES TMB values was also quantified using 95% prediction limits. RESULTS: Study results demonstrated that variability within and between panel TMB values increases as the WES TMB values increase. For each panel, prediction limits based on linear regression analyses that modeled panel TMB as a function of WES TMB were calculated and found to approximately capture the intended 95% of observed panel TMB values. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers. CONCLUSIONS: Increasing uptake of TMB as a predictive biomarker in the clinic creates an urgent need to bring stakeholders together to agree on the harmonization of key aspects of panel-based TMB estimation, such as the standardization of TMB reporting, standardization of analytical validation studies and the alignment of panel-based TMB values with a reference standard. These harmonization efforts should improve consistency and reliability of panel TMB estimates and aid in clinical decision-making.


Assuntos
Guias como Assunto/normas , Inibidores de Checkpoint Imunológico/uso terapêutico , Carga Tumoral/genética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA