Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17270, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828222

RESUMO

Accurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion. In this study, twenty-one patients undergoing thyroidectomy or parathyroidectomy were recruited to compare LSCI and ICG fluorescence intraoperatively. An experimental imaging device was used to image a total of 37 parathyroid glands. Scores of 0, 1 or 2 were assigned for ICG fluorescence by three observers based on perceived intensity: 0 for little to no fluorescence, 1 for moderate or patchy fluorescence, and 2 for strong fluorescence. Speckle contrast values were grouped according to these scores. Analyses of variance were performed to detect significant differences between groups. Lastly, ICG fluorescence intensity was calculated for each parathyroid gland and compared with speckle contrast in a linear regression. Results showed significant differences in speckle contrast between groups such that parathyroids with ICG score 0 had higher speckle contrast than those assigned ICG score 1, which in turn had higher speckle contrast than those assigned ICG score 2. This was further supported by a correlation coefficient of -0.81 between mean-normalized ICG fluorescence intensity and speckle contrast. This suggests that ICG angiography and LSCI detect similar differences in blood flow to parathyroid glands. Laser speckle contrast imaging shows promise as a label-free alternative that overcomes current limitations of ICG angiography for parathyroid assessment.


Assuntos
Verde de Indocianina , Glândulas Paratireoides , Humanos , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Imagem de Contraste de Manchas a Laser , Angiografia , Perfusão
2.
ACS Omega ; 8(37): 33745-33754, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744797

RESUMO

The need for highly sensitive, low-cost, and timely diagnostic technologies at the point of care is increasing. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is an advantageous technique to address this need, as it can rapidly detect analytes in small or dilute samples with improved sensitivity compared to conventional Raman spectroscopy. Despite the many advantages of SERS, one drawback of the technique is poor reproducibility due to variable interactions between nanoparticles and target analytes. To overcome this limitation, coupling SERS with the coffee ring effect has been implemented to concentrate and localize analyte-nanoparticle conjugates for improved signal reproducibility. However, current coffee ring platforms require laborious fabrication steps. Herein, we present a low-cost, two-step fabrication process for coffee ring-assisted SERS, utilizing wax-printed nitrocellulose paper. The platform was designed to produce a highly hydrophobic paper substrate that supports the coffee ring effect and tested using gold nanoparticles for SERS sensing. The nanoparticle concentration and solvent were varied to determine the effect of solution composition on ring formation and center clearance. The SERS signal was validated using 4-mercaptobenzoic acid (MBA) and tested with Moraxella catarrhalis bacteria to ensure functionality for chemical and biological applications. The limit of detection using MBA is 41.56 nM, and the biochemical components of the bacterial cell wall were enhanced with low spectral variability. The developed platform is advantageous due to ease of fabrication and use, representing the next step toward implementing low-cost coffee ring-assisted SERS for point-of-care sensing.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123240, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591015

RESUMO

Since spatially offset Raman spectroscopy (SORS) can acquire biochemical measurements of tissue quality through light scattering materials, we investigated the feasibility of this technique to acquire Raman bands related to the fracture resistance of bone. Designed to maximize signals at different offsets, a SORS probe was used to acquire spectra from cadaveric bone with and without skin-like tissue phantoms attenuating the light. Autoclaving the lateral side of femur mid-shafts from 5 female and 5 male donors at 100 °C and again at 120 °C reduced the yield stress of cortical beams subjected to three-point bending. It did not affect the volumetric bone mineral density or porosity. Without tissue phantoms, autoclaving affected more Raman characteristics of the organic matrix when determined by peak intensity ratios, but fewer matrix properties depended on the three offsets (5 mm, 6 mm, and 7 mm) when determined by band area ratios. The cut-off in the thickness of the tissue phantom layers was ∼4 mm for most properties, irrespective of offset. Matching trends when spectra were acquired without phantom layers between bone and the probe, ν1PO43-/Amide III and ν1PO43-/(proline + OH-proline) were higher and lower in the non-treated bone than in the autoclaved bone, respectively, when the thickness of tissue phantom layers was 4 mm. The layers, however, caused a loss of sensitivity to autoclaving-related changes in ν3CO3/ν1PO43- and crystallinity. Without advanced post-processing of Raman spectra, SORS acquisition through turbid layers can detect changes in Raman properties of bone that accompany a loss in bone strength.


Assuntos
Matriz Óssea , Análise Espectral Raman , Humanos , Feminino , Masculino , Amidas , Densidade Óssea , Prolina
4.
Biomed Opt Express ; 14(7): 3597-3609, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497480

RESUMO

We present a methodology for evaluating the performance of probe-based Raman spectroscopy systems for biomedical analysis. This procedure uses a biological standard sample and data analysis approach to circumvent many of the issues related to accurately measuring and comparing the signal quality of Raman spectra between systems. Dairy milk is selected as the biological standard due to its similarity to tissue spectral properties and because its homogeneity eliminates the dependence of probe orientation on the measured spectrum. A spectral dataset is first collected from milk for each system configuration, followed by a model-based correction step to remove photobleaching artifacts and accurately calculate SNR. Results demonstrate that the proposed strategy, unlike current methods, produces an experimental SNR that agrees with the theoretical value. Four preconfigured imaging spectrographs that share similar manufacturer specifications were compared, showing that their capabilities to detect biological Raman spectra widely differ in terms of throughput and stray light rejection. While the methodology is used to compare spectrographs in this case, it can be adapted for other purposes, such as optimizing the design of a custom-built Raman spectrometer, evaluating inter-probe variability, or examining how altering system subcomponents affects signal quality.

5.
Sci Rep ; 13(1): 4362, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928795

RESUMO

In surgical procedures where the risk of accidental nerve damage is prevalent, surgeons commonly use electrical stimulation (ES) during intraoperative nerve monitoring (IONM) to assess a nerve's functional integrity. ES, however, is subject to off-target stimulation and stimulation artifacts disguising the true functionality of the specific target and complicating interpretation. Lacking a stimulation artifact and having a higher degree of spatial specificity, infrared neural stimulation (INS) has the potential to improve upon clinical ES for IONM. Here, we present a direct comparison between clinical ES and INS for IONM performance in an in vivo rat model. The sensitivity of INS surpasses that of ES in detecting partial forms of damage while maintaining a comparable specificity and sensitivity to more complete forms. Without loss in performance, INS is readily compatible with existing clinical nerve monitoring systems. These findings underscore the clinical potential of INS to improve IONM and surgical outcomes.


Assuntos
Monitorização Intraoperatória , Procedimentos Neurocirúrgicos , Animais , Ratos , Monitorização Intraoperatória/métodos
6.
JAMA Otolaryngol Head Neck Surg ; 149(3): 253-260, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633855

RESUMO

Importance: Identification and preservation of parathyroid glands (PGs) remain challenging despite advances in surgical techniques. Considerable morbidity and even mortality result from hypoparathyroidism caused by devascularization or inadvertent removal of PGs. Emerging imaging technologies hold promise to improve identification and preservation of PGs during thyroid surgery. Observation: This narrative review (1) comprehensively reviews PG identification and vascular assessment using near-infrared autofluorescence (NIRAF)-both label free and in combination with indocyanine green-based on a comprehensive literature review and (2) offers a manual for possible implementation these emerging technologies in thyroid surgery. Conclusions and Relevance: Emerging technologies hold promise to improve PG identification and preservation during thyroidectomy. Future research should address variables affecting the degree of fluorescence in NIRAF, standardization of signal quantification, definitions and standardization of parameters of indocyanine green injection that correlate with postoperative PG function, the financial effect of these emerging technologies on near-term and longer-term costs, the adoption learning curve and effect on surgical training, and long-term outcomes of key quality metrics in adequately powered randomized clinical trials evaluating PG preservation.


Assuntos
Hipoparatireoidismo , Glândulas Paratireoides , Humanos , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/cirurgia , Verde de Indocianina , Imagem Óptica/efeitos adversos , Imagem Óptica/métodos , Tireoidectomia/métodos , Hipoparatireoidismo/etiologia
7.
Analyst ; 146(24): 7464-7490, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34786574

RESUMO

Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.


Assuntos
Osso e Ossos , Análise Espectral Raman , Amidas , Fosfatos , Reprodutibilidade dos Testes
8.
Biomed Opt Express ; 12(2): 852-871, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680546

RESUMO

In vivo Raman spectroscopy has been utilized for the non-invasive, non-destructive assessment of tissue pathophysiology for a variety of applications largely through the use of fiber optic probes to interface with samples of interest. Fiber optic probes can be designed to optimize the collection of Raman-scattered photons from application-dependent depths, and this critical consideration should be addressed when planning a study. Herein we investigate four distinct probe geometries for sensitivity to superficial and deep signals through a Monte Carlo model that incorporates Raman scattering and fluorescence. Experimental validation using biological tissues was performed to accurately recapitulate in vivo scenarios. Testing in biological tissues agreed with modeled results and revealed that microlens designs had slightly enhanced performance at shallow depths (< 1 mm), whereas all of the beampath-modified designs yielded more signal from deep within tissue. Simulation based on fluence maps generated using ray-tracing in the absence of optical scattering had drastically different results as a function of depth for each probe compared to the biological simulation. The contrast in simulation results between the non-scattering and biological tissue phantoms underscores the importance of considering the optical properties of a given application when designing a fiber optic probe. The model presented here can be easily extended for optimization of entirely novel probe designs prior to fabrication, reducing time and cost while improving data quality.

9.
J Biophotonics ; 14(6): e202100008, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583122

RESUMO

During thyroid surgeries, it is important for surgeons to accurately identify healthy parathyroid glands and assess their vascularity to preserve their function postoperatively, thus preventing hypoparathyroidism and hypocalcemia. Near infrared autofluorescence detection enables parathyroid identification, while laser speckle contrast imaging allows assessment of parathyroid vascularity. Here, we present an imaging system combining the two techniques to perform both functions, simultaneously and label-free. An algorithm to automate the segmentation of a parathyroid gland in the fluorescence image to determine its average speckle contrast is also presented, reducing a barrier to clinical translation. Results from imaging ex vivo tissue samples show that the algorithm is equivalent to manual segmentation. Intraoperative images from representative procedures are presented showing successful implementation of the device to identify and assess vascularity of healthy and diseased parathyroid glands.


Assuntos
Glândulas Paratireoides , Paratireoidectomia , Diagnóstico por Imagem , Imagem Óptica , Glândulas Paratireoides/diagnóstico por imagem , Glândula Tireoide , Tireoidectomia
11.
Am J Obstet Gynecol ; 223(3): 312-321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565236

RESUMO

Recent revolutionary advances at the intersection of medicine, omics, data sciences, computing, epidemiology, and related technologies inspire us to ponder their impact on health. Their potential impact is particularly germane to the biology of pregnancy and perinatal medicine, where limited improvement in health outcomes for women and children has remained a global challenge. We assembled a group of experts to establish a Pregnancy Think Tank to discuss a broad spectrum of major gestational disorders and adverse pregnancy outcomes that affect maternal-infant lifelong health and should serve as targets for leveraging the many recent advances. This report reflects avenues for future effects that hold great potential in 3 major areas: developmental genomics, including the application of methodologies designed to bridge genotypes, physiology, and diseases, addressing vexing questions in early human development; gestational physiology, from immune tolerance to growth and the timing of parturition; and personalized and population medicine, focusing on amalgamating health record data and deep phenotypes to create broad knowledge that can be integrated into healthcare systems and drive discovery to address pregnancy-related disease and promote general health. We propose a series of questions reflecting development, systems biology, diseases, clinical approaches and tools, and population health, and a call for scientific action. Clearly, transdisciplinary science must advance and accelerate to address adverse pregnancy outcomes. Disciplines not traditionally involved in the reproductive sciences, such as computer science, engineering, mathematics, and pharmacology, should be engaged at the study design phase to optimize the information gathered and to identify and further evaluate potentially actionable therapeutic targets. Information sources should include noninvasive personalized sensors and monitors, alongside instructive "liquid biopsies" for noninvasive pregnancy assessment. Future research should also address the diversity of human cohorts in terms of geography, racial and ethnic distributions, and social and health disparities. Modern technologies, for both data-gathering and data-analyzing, make this possible at a scale that was previously unachievable. Finally, the psychosocial and economic environment in which pregnancy takes place must be considered to promote the health and wellness of communities worldwide.


Assuntos
Promoção da Saúde/tendências , Resultado da Gravidez , Economia , Feminino , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Humanos , Assistência Perinatal , Gravidez , Complicações na Gravidez/etnologia , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Resultado da Gravidez/epidemiologia , Resultado da Gravidez/genética , Psicologia
12.
J Biophotonics ; 12(2): e201800138, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30259692

RESUMO

Preterm birth (PTB) is the leading cause of neonatal death, however, accurate prediction methods do not exist. Detection of early changes in the cervix, an organ that biochemically remodels to deliver the fetus, has potential to predict PTB risk. Researchers have employed light-based methods to monitor biochemical changes in the cervix during pregnancy, however, these approaches required patients to undergo a speculum examination which many patients find uncomfortable and is not standard practice during prenatal care. Herein, a visually guided optical probe is presented that measures the cervix via introduction by bimanual examination, a procedure that is commonly performed during prenatal visits and labor for tactile monitoring of the cervix. The device incorporates a Raman spectroscopy probe for biochemical monitoring and a camera for visualizing measurement location to ensure it is void of cervical mucus and blood. This probe was tested in 15 patients receiving obstetric and gynecological care, and results acquired with and without a speculum revealed similar spectra, demonstrating that the visually guided probe conserved data quality. Additionally, the majority of patients reported reduced discomfort from the device. In summary, the visual guidance probe successfully measured the cervix while integrating with standard prenatal care, reducing a barrier in clinical translation.


Assuntos
Colo do Útero/citologia , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Feminino , Humanos , Gravidez
13.
Appl Spectrosc ; 71(10): 2385-2394, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28708001

RESUMO

A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370-1720 cm-1) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21-101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (Kinit) from crack growth toughness (Kgrow). The traditional ν1phosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with Kinit (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (Kinit: r = - 0.467, Kgrow: r = - 0.375, and J-int: r = - 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in Kinit, Kgrow, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.


Assuntos
Osso Cortical/química , Osso Cortical/fisiologia , Fraturas Ósseas/fisiopatologia , Análise Espectral Raman/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Colágeno/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Biomed Opt ; 18(5): 55005, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23708192

RESUMO

There is potential for Raman spectroscopy (RS) to complement tools for bone diagnosis due to its ability to assess compositional and organizational characteristics of both collagen and mineral. To aid this potential, the present study assessed specificity of RS peaks to the composition of bone, a birefringent material, for different degrees of instrument polarization. Specifically, relative changes in peaks were quantified as the incident light rotated relative to the orientation of osteonal and interstitial tissue, acquired from cadaveric femurs. In a highly polarized instrument (10(6)∶1 extinction ratio), the most prominent mineral peak (ν1 Phosphate at 961 cm(-1)) displayed phase similarity with the Proline peak at 856 cm(-1). This sensitivity to relative orientation between bone and light observed in the highly polarized regime persisted for certain sensitive peaks (e.g., Amide I at 1666 cm(-1)) in unaltered instrumentation (200∶1 extinction ratio). Though Proline intensity changed with bone rotation, the phase of Proline matched that of ν1 Phosphate. Moreover, when mapping ν1 Phosphate/Proline across osteonal-interstitial borders, the mineralization difference between the tissue types was evident whether using a 20x or 50x objectives. Thus, the polarization bias inherent in commercial RS systems does not preclude the assessment of bone composition when using phase-matched peaks.


Assuntos
Osso e Ossos/química , Processamento de Sinais Assistido por Computador , Análise Espectral Raman/métodos , Idoso , Idoso de 80 Anos ou mais , Calcificação Fisiológica , Análise por Conglomerados , Colágeno/química , Feminino , Fêmur/química , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Fosfatos/análise , Fosfatos/química , Prolina/análise , Prolina/química
15.
J Biomed Opt ; 16(7): 077006, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806286

RESUMO

The risk of local recurrence for breast cancers is strongly correlated with the presence of a tumor within 1 to 2 mm of the surgical margin on the excised specimen. Previous experimental and theoretical results suggest that spatially offset Raman spectroscopy (SORS) holds much promise for intraoperative margin analysis. Based on simulation predictions for signal-to-noise ratio differences among varying spatial offsets, a SORS probe with multiple source-detector offsets was designed and tested. It was then employed to acquire spectra from 35 frozen-thawed breast tissue samples in vitro. Spectra from each detector ring were averaged to create a composite spectrum with biochemical information covering the entire range from the tissue surface to ∼2 mm below the surface, and a probabilistic classification scheme was used to classify these composite spectra as "negative" or "positive" margins. This discrimination was performed with 95% sensitivity and 100% specificity, or with 100% positive predictive value and 94% negative predictive value.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Mastectomia Segmentar/instrumentação , Análise Espectral Raman/instrumentação , Animais , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Galinhas , Feminino , Humanos , Técnicas In Vitro , Mastectomia Segmentar/estatística & dados numéricos , Modelos Estatísticos , Método de Monte Carlo , Fenômenos Ópticos , Razão Sinal-Ruído
16.
Appl Spectrosc ; 64(6): 607-14, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20537228

RESUMO

We have previously demonstrated the discrimination of two layers of soft tissue, specifically normal breast tissue overlying breast tumor, using spatially offset Raman spectroscopy (SORS). In this report, a Monte Carlo code for evaluating SORS in soft tissues has been developed and compared to experimental results. The model was employed to investigate the effects of tissue and probe geometry on SORS measurements and therefore to develop the design strategies of applying SORS for breast tumor surgical margin evaluation. The model was used to predict SORS signals for different tissue geometries difficult to precisely control experimentally, such as varying normal and tumor layer sizes and the addition of a third layer. The results from the model suggest that, using source-detector separations of up to 3.75 mm, SORS can detect sub-millimeter-thick tumors under a 1 mm normal layer, and tumors at least 1 mm thick can be detected under a 2 mm normal layer.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Método de Monte Carlo , Análise Espectral Raman/métodos , Neoplasias da Mama/diagnóstico , Feminino , Humanos
17.
J Gastrointest Surg ; 8(6): 660-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15358325

RESUMO

Radiofrequency ablation (RFA) is an evolving technology used to treat unresectable liver tumors. Currently, there is no accurate method to determine RFA margins in real-time during the procedure. We hypothesized that a fiber-optic based spectroscopic monitoring system could detect thermal damage from RFA in real-time. Fluorescence (F) and diffuse reflectance (Rd) spectra were continuously acquired from within the expected ablation zone during canine hepatic RFA using a fiber-optic microinterrogation probe (MIP). The F and Rd spectral feedback were continuously monitored and ablations were stopped based on changes in spectra alone. After each ablation, the MIP tract was marked with India ink and the ablation zone was excised. The relationship of the MIP to the zone of ablation was examined grossly and microscopically. F and Rd spectral changes occurred in three characteristic phases as the ablation zone progresses past the MIP. Phase 1 indicates minimal deviation from normal lives. Phase 2 occurs as the MIP lies within the hemorrhagic zone of the ablated tissue. Phase 3 correlates with complete tissue coagulation. The absolute magnitude of spectral change correlates with the gross and histologic degree of thermal damage. Optical spectroscopy is a technology that allows real-time detection of thermal tissue damage. In this study, both F and Rd spectroscopy accurately defined the advancing hemorrhagic edge of the zone of ablation and the central coagulation zone. These results suggest that F and Rd spectroscopy can be used to create a real-time feedback system to accurately define RFA margins.


Assuntos
Ablação por Cateter , Morte Celular/efeitos da radiação , Fígado/efeitos da radiação , Espectrometria de Fluorescência/métodos , Animais , Cães , Tecnologia de Fibra Óptica , Neoplasias Hepáticas/terapia , Modelos Animais , Fibras Ópticas , Processamento de Sinais Assistido por Computador
18.
J Biomed Opt ; 9(5): 1018-27, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15447024

RESUMO

Resection is not a viable treatment option for the majority of liver cancer patients. Alternatives to resection include thermotherapies such as radio-frequency ablation; however, these therapies lack adequate intraoperative feedback regarding the degree and margins of tissue thermal damage. In this proof of principle study, we test the ability of fluorescence and diffuse reflectance spectroscopy to assess local thermal damage in vivo. Spectra were acquired in vivo from healthy canine liver tissue undergoing radio-frequency ablation using a portable fiber-optic-based spectroscopic system. The major observed spectral alterations on thermal coagulation were a red shift in the fluorescence emission peak at 480 nm, a decrease in the overall fluorescence intensity, and an increase in the diffuse reflectance from 450 to 750 nm. Spectral changes were quantified and correlated to tissue histology. We found a good correlation between the proposed spectral correlates of thermal damage and histology. The results of this study suggest that fluorescence and diffuse reflectance spectroscopy show strong potential as tools to monitor liver tissue thermal damage intraoperatively.


Assuntos
Ablação por Cateter/métodos , Temperatura Alta , Fígado/efeitos da radiação , Fígado/cirurgia , Espectrometria de Fluorescência/métodos , Cirurgia Assistida por Computador/métodos , Animais , Queimaduras/diagnóstico , Cães , Estudos de Viabilidade , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Espectrometria de Fluorescência/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA