Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Heart Fail ; 15(5): e008970, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236099

RESUMO

Heart failure with reduced ejection fraction (HFrEF) is a highly morbid condition for which exercise intolerance is a major manifestation. However, methods to assess exercise capacity in HFrEF vary widely in clinical practice and in trials. We describe advances in exercise capacity assessment in HFrEF and a comparative analysis of how various therapies available for HFrEF impact exercise capacity. Current guideline-directed medical therapy has indirect effects on cardiac performance with minimal impact on measured functional capacity. Omecamtiv mecarbil is a novel selective cardiac myosin activator that directly increases cardiac contractility and in a phase 3 cardiovascular outcomes study significantly reduced the primary composite end point of time to first heart failure event or cardiovascular death in patients with HFrEF. The objective of the METEORIC-HF trial (Multicenter Exercise Tolerance Evaluation of Omecamtiv Mecarbil Related to Increased Contractility in Heart Failure) is to assess the effect of omecamtiv mecarbil versus placebo on multiple components of functional capacity in HFrEF. The primary end point is to test the effect of omecamtiv mecarbil compared with placebo on peak oxygen uptake as measured by cardiopulmonary exercise testing after 20 weeks of treatment. METEORIC-HF will provide state-of-the-art assessment of functional capacity by measuring ventilatory efficiency, circulatory power, ventilatory anaerobic threshold, oxygen uptake recovery kinetics, daily activity, and quality-of-life assessment. Thus, the METEORIC-HF trial will evaluate the potential impact of increased myocardial contractility with omecamtiv mecarbil on multiple important measures of functional capacity in ambulatory patients with symptomatic HFrEF. Registration: URL: https://clinicaltrials.gov; Unique identifier: NCT03759392.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Tolerância ao Exercício , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Estudos Multicêntricos como Assunto , Contração Miocárdica , Oxigênio , Volume Sistólico
2.
JAMA Cardiol ; 7(1): 26-34, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643642

RESUMO

Importance: Heart failure with reduced ejection fraction is a progressive clinical syndrome, and many patients' condition worsen over time despite treatment. Patients with more severe disease are often intolerant of available medical therapies. Objective: To evaluate the efficacy and safety of omecamtiv mecarbil for the treatment of patients with severe heart failure (HF) enrolled in the Global Approach to Lowering Adverse Cardiac Outcomes Through Improving Contractility in Heart Failure (GALACTIC-HF) randomized clinical trial. Design, Setting, and Participants: The GALACTIC-HF study was a global double-blind, placebo-controlled phase 3 randomized clinical trial that was conducted at multiple centers between January 2017 and August 2020. A total of 8232 patients with symptomatic HF (defined as New York Heart Association symptom class II-IV) and left ventricular ejection fraction of 35% or less were randomized to receive omecamtiv mecarbil or placebo and followed up for a median of 21.8 months (range, 15.4-28.6 months). The current post hoc analysis evaluated the efficacy and safety of omecamtiv mecarbil therapy among patients classified as having severe HF compared with patients without severe HF. Severe HF was defined as the presence of all of the following criteria: New York Heart Association symptom class III to IV, left ventricular ejection fraction of 30% or less, and hospitalization for HF within the previous 6 months. Interventions: Participants were randomized at a 1:1 ratio to receive either omecamtiv mecarbil or placebo. Main Outcomes and Measures: The primary end point was time to first HF event or cardiovascular (CV) death. Secondary end points included time to CV death and safety and tolerability. Results: Among 8232 patients enrolled in the GALACTIC-HF clinical trial, 2258 patients (27.4%; mean [SD] age, 64.5 [11.6] years; 1781 men [78.9%]) met the specified criteria for severe HF. Of those, 1106 patients were randomized to the omecamtiv mecarbil group and 1152 to the placebo group. Patients with severe HF who received omecamtiv mecarbil experienced a significant treatment benefit for the primary end point (hazard ratio [HR], 0.80; 95% CI, 0.71-0.90), whereas patients without severe HF had no significant treatment benefit (HR, 0.99; 95% CI, 0.91-1.08; P = .005 for interaction). For CV death, the results were similar (HR for patients with vs without severe HF: 0.88 [95% CI, 0.75-1.03] vs 1.10 [95% CI, 0.97-1.25]; P = .03 for interaction). Omecamtiv mecarbil therapy was well tolerated in patients with severe HF, with no significant changes in blood pressure, kidney function, or potassium level compared with placebo. Conclusions and Relevance: In this post hoc analysis of data from the GALACTIC-HF clinical trial, omecamtiv mecarbil therapy may have provided a clinically meaningful reduction in the composite end point of time to first HF event or CV death among patients with severe HF. These data support a potential role of omecamtiv mecarbil therapy among patients for whom current treatment options are limited. Trial Registration: ClinicalTrials.gov Identifier: NCT02929329.


Assuntos
Pressão Sanguínea/fisiologia , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico/fisiologia , Ureia/análogos & derivados , Função Ventricular Esquerda/fisiologia , Método Duplo-Cego , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Estudos Retrospectivos , Resultado do Tratamento , Ureia/uso terapêutico
3.
J Physiol ; 597(17): 4615-4625, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31246276

RESUMO

KEY POINTS: Skeletal muscle fatigue limits performance in various physical activities, with exercise intolerance being a key symptom in a broad spectrum of diseases. We investigated whether a small molecule fast skeletal troponin activator (FSTA), CK-2066260, can mitigate muscle fatigue by reducing the cytosolic free [Ca2+ ] required to produce a given submaximal force and hence decreasing the energy requirement. Isolated intact single mouse muscle fibres and rat muscles in-situ treated with CK-2066260 showed improved muscle endurance., which was accompanied by decreased ATP demand and reduced glycogen usage. CK-2066260 treatment improved in-vivo exercise capacity in healthy rats and in a rat model of peripheral artery insufficiency. In conclusion, we show that the FSTA CK-2066260 effectively counteracts muscle fatigue in rodent skeletal muscle in vitro, in situ, and in vivo. This may translate to humans and provide a promising pharmacological treatment to patients suffering from severe muscle weakness and exercise intolerance. ABSTRACT: Skeletal muscle fatigue limits performance during physical exercise and exacerbated muscle fatigue is a prominent symptom among a broad spectrum of diseases. The present study investigated whether skeletal muscle fatigue is affected by the fast skeletal muscle troponin activator (FSTA) CK-2066260, which increases myofibrillar Ca2+ sensitivity and amplifies the submaximal force response. Because more force is produced for a given Ca2+ , we hypothesized that CK-2066260 could mitigate muscle fatigue by reducing the energetic cost of muscle activation. Isolated single mouse muscle fibres were fatigued by 100 repeated 350 ms contractions while measuring force and the cytosolic free [Ca2+ ] or [Mg2+ ] ([Mg2+ ]i ). When starting fatiguing stimulation at matching forces (i.e. lower stimulation frequency with CK-2066260): force was decreased by ∼50% with and by ∼75% without CK-2066260; [Mg2+ ]i was increased by ∼10% with and ∼32% without CK-2066260, reflecting a larger decrease in [ATP] in the latter. The glycogen content in in situ stimulated rat muscles fatigued by repeated contractions at matching forces was about two times higher with than without CK-2066260. Voluntary exercise capacity, assessed by rats performing rotarod exercise and treadmill running, was improved in the presence of CK-2066260. CK-2066260 treatment also increased skeletal muscle fatigue resistance and exercise performance in a rat model of peripheral artery insufficiency. In conclusion, we demonstrate that the FSTA CK-2066260 mitigates skeletal muscle fatigue by reducing the metabolic cost of force generation.


Assuntos
Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Troponina/metabolismo , Animais , Cálcio/metabolismo , Feminino , Glicogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibrilas/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Cardiovasc Drugs Ther ; 31(4): 445-458, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28735360

RESUMO

PURPOSE: The need for novel approaches to cardiovascular drug development served as the impetus to convene an open meeting of experts from the pharmaceutical industry and academia to assess the challenges and develop solutions for drug discovery in cardiovascular disease. METHODS: The Novel Cardiovascular Therapeutics Summit first reviewed recent examples of ongoing or recently completed programs translating basic science observations to targeted drug development, highlighting successes (protein convertase sutilisin/kexin type 9 [PCSK9] and neprilysin inhibition) and targets still under evaluation (cholesteryl ester transfer protein [CETP] inhibition), with the hope of gleaning key lessons to successful drug development in the current era. Participants then reviewed the use of innovative approaches being explored to facilitate rapid and more cost-efficient evaluations of drug candidates in a short timeframe. RESULTS: We summarize observations gleaned from this summit and offer insight into future cardiovascular drug development. CONCLUSIONS: The rapid development in genetic and high-throughput drug evaluation technologies, coupled with new approaches to rapidly evaluate potential cardiovascular therapies with in vitro techniques, offer opportunities to identify new drug targets for cardiovascular disease, study new therapies with better efficiency and higher throughput in the preclinical setting, and more rapidly bring the most promising therapies to human testing. However, there must be a critical interface between industry and academia to guide the future of cardiovascular drug development. The shared interest among academic institutions and pharmaceutical companies in developing promising therapies to address unmet clinical needs for patients with cardiovascular disease underlies and guides innovation and discovery platforms that are significantly altering the landscape of cardiovascular drug development.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Animais , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/fisiopatologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica , Humanos
5.
Eur J Heart Fail ; 19(6): 718-727, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345190

RESUMO

Despite the availability of a number of different classes of therapeutic agents with proven efficacy in heart failure, the clinical course of heart failure patients is characterized by a reduction in life expectancy, a progressive decline in health-related quality of life and functional status, as well as a high risk of hospitalization. New approaches are needed to address the unmet medical needs of this patient population. The European Medicines Agency (EMA) is undertaking a revision of its Guideline on Clinical Investigation of Medicinal Products for the Treatment of Chronic Heart Failure. The draft version of the Guideline was released for public consultation in January 2016. The Cardiovascular Round Table of the European Society of Cardiology (ESC), in partnership with the Heart Failure Association of the ESC, convened a dedicated two-day workshop to discuss three main topic areas of major interest in the field and addressed in this draft EMA guideline: (i) assessment of efficacy (i.e. endpoint selection and statistical analysis); (ii) clinical trial design (i.e. issues pertaining to patient population, optimal medical therapy, run-in period); and (iii) research approaches for testing novel therapeutic principles (i.e. cell therapy). This paper summarizes the key outputs from the workshop, reviews areas of expert consensus, and identifies gaps that require further research or discussion. Collaboration between regulators, industry, clinical trialists, cardiologists, health technology assessment bodies, payers, and patient organizations is critical to address the ongoing challenge of heart failure and to ensure the development and market access of new therapeutics in a scientifically robust, practical and safe way.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Ensaios Clínicos como Assunto , Insuficiência Cardíaca/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Consenso , Aprovação de Drogas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA