Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 14: 8149-8159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632024

RESUMO

INTRODUCTION: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength. MATERIALS AND METHODS: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites. RESULTS: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE. CONCLUSION: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.


Assuntos
Osso e Ossos/fisiologia , Poliuretanos/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Teste de Materiais , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Titânio/farmacologia , Molhabilidade , Difração de Raios X
2.
Int J Nanomedicine ; 13: 2777-2788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785105

RESUMO

INTRODUCTION: Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. MATERIALS AND METHODS: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. RESULTS: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). CONCLUSION: The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.


Assuntos
Osso e Ossos/fisiologia , Nanocompostos/química , Plectranthus/química , Engenharia Tecidual/métodos , Humanos , Teste de Materiais , Metalocenos/química , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Tempo de Tromboplastina Parcial , Polietileno/química , Álcool de Polivinil/química , Porosidade , Tempo de Protrombina , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria
3.
Biomed Tech (Berl) ; 63(3): 245-253, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678733

RESUMO

Electrospun polyurethane based nanocomposite scaffolds were fabricated by mixing with indhulekha oil. Scanning electron microscope (SEM) portrayed the nanofibrous nature of the composite and the average diameters of the composite scaffold were smaller than the pristine scaffolds. The fabricated scaffold was found to be hydrophobic (114°) due to the inclusion of indhulekha oil, which was displayed in contact angle measurement analysis. The fourier transform infrared spectroscopy (FTIR) results indicated that the indhulekha oil was dispersed in PU matrix identified by formation of hydrogen bond and peak shifting of CH group. The PU/indhulekha oil nanocomposite exhibits a higher decomposition onset temperature and also residual weight percentage at 900°C was more compared to the pure PU. Surface roughness was found to be increased in the composite compared to the pristine PU as indicated by the atomic force microscopy (AFM) analysis. In order to investigate the blood compatibility of electrospun nanocomposites the activated partial thromboplastin time (APTT) assay, prothrombin time (PT) assay and hemolytic assay were performed. The blood compatibility results APTT and PT revealed that the developed nanocomposites demonstrated delayed clotting time indicating the anticoagulant nature of the composite in comparison with the pristine PU. Further, it was also observed that the hemolytic index of nanocomposites was reduced compared to pure PU suggesting the non-hemolytic nature of the fabricated scaffold. Hence, the fabricated nanocomposites might be considered as a potent substitute for scaffolding damaged tissue due to their inherent physicochemical and blood compatibility properties.


Assuntos
Materiais Biocompatíveis/química , Óleos/química , Poliuretanos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA