Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769827

RESUMO

PURPOSE: Accurate detection of cerebral microbleeds (CMBs) on susceptibility-weighted (SWI) magnetic resonance imaging (MRI) is crucial for the characterization of many neurological diseases. Low-field MRI offers greater access at lower costs and lower infrastructural requirements, but also reduced susceptibility artifacts. We therefore evaluated the diagnostic performance for the detection of CMBs of a whole-body low-field MRI in a prospective cohort of suspected stroke patients compared to an established 1.5 T MRI. METHODS: A prospective scanner comparison was performed including 27 patients, of whom 3 patients were excluded because the time interval was >1 h between acquisition of the 1.5 T and 0.55 T MRI. All SWI sequences were assessed for the presence, number, and localization of CMBs by two neuroradiologists and additionally underwent a Likert rating with respect to image impression, resolution, noise, contrast, and diagnostic quality. RESULTS: A total of 24 patients with a mean age of 74 years were included (11 female). Both readers detected the same number and localization of microbleeds in all 24 datasets (sensitivity and specificity 100%; interreader reliability Ï° = 1), with CMBs only being observed in 12 patients. Likert ratings of the sequences at both field strengths regarding overall image quality and diagnostic quality did not reveal significant differences between the 0.55 T and 1.5 T sequences (p = 0.942; p = 0.672). For resolution and contrast, the 0.55 T sequences were even significantly superior (p < 0.0001; p < 0.0003), whereas the 1.5 T sequences were significantly superior (p < 0.0001) regarding noise. CONCLUSION: Low-field MRI at 0.55 T may have similar accuracy as 1.5 T scanners for the detection of microbleeds and thus may have great potential as a resource-efficient alternative in the near future.

2.
Invest Radiol ; 51(8): 491-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26895193

RESUMO

OBJECTIVE: The aim of this study was to investigate the image quality, radiation dose, and accuracy of virtual noncontrast images and iodine quantification of split-filter dual-energy computed tomography (CT) using a single x-ray source in a phantom and patient study. MATERIALS AND METHODS: In a phantom study, objective image quality and accuracy of iodine quantification were evaluated for the split-filter dual-energy mode using a tin and gold filter. In a patient study, objective image quality and radiation dose were compared in thoracoabdominal CT of 50 patients between the standard single-energy and split-filter dual-energy mode. The radiation dose was estimated by size-specific dose estimate. To evaluate the accuracy of virtual noncontrast imaging, attenuation measurements in the liver, spleen, and muscle were compared between a true noncontrast premonitoring scan and the virtual noncontrast images of the dual-energy scans. Descriptive statistics and the Mann-Whitney U test were used. RESULTS: In the phantom study, differences between the real and measured iodine concentration ranged from 2.2% to 21.4%. In the patient study, the single-energy and dual-energy protocols resulted in similar image noise (7.4 vs 7.1 HU, respectively; P = 0.43) and parenchymal contrast-to-noise ratio (CNR) values for the liver (29.2 vs 28.5, respectively; P = 0.88). However, the vascular CNR value for the single-energy protocol was significantly higher than for the dual-energy protocol (10.0 vs 7.1, respectively; P = 0.006). The difference in the measured attenuation between the true and the virtual noncontrast images ranged from 3.1 to 6.7 HU. The size-specific dose estimate of the dual-energy protocol was, on average, 17% lower than that of the single-energy protocol (11.7 vs 9.7 mGy, respectively; P = 0.008). CONCLUSIONS: Split-filter dual-energy compared with single-energy CT results in similar objective image noise in addition to dual-energy capabilities at 17% lower radiation dose. Because of beam hardening, split-filter dual-energy can lead to decreased CNR values of iodinated structures.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Técnicas In Vitro , Iodo , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Radiografia Abdominal/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radiografia Torácica/métodos , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA