Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Microbiol ; 6(10): 1271-1278, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497354

RESUMO

Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook 'Data for Good' and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel.


Assuntos
COVID-19/transmissão , Telefone Celular/estatística & dados numéricos , Genoma Viral/genética , SARS-CoV-2/genética , Mídias Sociais/estatística & dados numéricos , Bangladesh/epidemiologia , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Genômica , Política de Saúde/legislação & jurisprudência , Humanos , Filogenia , Dinâmica Populacional/estatística & dados numéricos , SARS-CoV-2/classificação , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricos
2.
J Virol Methods ; 293: 114147, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812943

RESUMO

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is posing a great threat to global health and economy. Due to the lack of broad diagnostic setup, consistent reagent supply lines, and access to laboratory instruments and equipment, it is undoubtedly an enormous burden for developing countries to face the crisis. OBJECTIVES: To develop a cost-effective, reliable and sensitive multiplex assay for SARS-CoV-2 screening which would expand the testing capacities of a developing and low-income country like Bangladesh. STUDY DESIGN: Initially a singleplex and then a multiplex real-time reverse-transcriptase PCR assays were developed targeting 2 nucleocapsid genes of SARS-CoV-2, and the human RNase P gene as an internal control using laboratory-made mastermixes. Three sets of primer- probes were designed for each of the target genes and one set was optimized for the final reaction set-up. Limit of detection, cross-reactivity and reproducibility were checked in order to assess the sensitivity and specificity of the assays, and validation was done using clinical specimens. RESULTS: Clinical evaluation of the new assays using 240 nasopharyngeal swabs showed 100 % sensitivity, specificity, and accuracy in detecting SARS-CoV-2 infection in human. Equal efficiency and concordant results were observed between the singleplex and multiplex approaches. Notably, the kit was able to detect SARS-CoV-2 RNA at very low concentration upto 5 copies/reaction. CONCLUSION: This is the first locally developed multiplex rRT-PCR kit in Bangladesh providing rapid and low-cost screening of COVID-19 which would be valuable for infection prevention and clinical management in the perspective of Bangladesh.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , SARS-CoV-2/genética , Teste de Ácido Nucleico para COVID-19/economia , Humanos , Limite de Detecção , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
BMC Genet ; 19(1): 1, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295702

RESUMO

BACKGROUND: Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. RESULTS: Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. CONCLUSIONS: Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and electrophortic indices in order to avoid false positive and false negative results.


Assuntos
Triagem de Portadores Genéticos/métodos , Hibridização de Ácido Nucleico/métodos , Globinas beta/genética , Talassemia beta/diagnóstico , Adolescente , Bangladesh , Criança , Pré-Escolar , Triagem de Portadores Genéticos/economia , Hemoglobina E/genética , Humanos , Lactente , Mutação , Talassemia beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA