Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hazard Mater ; 472: 134458, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703679

RESUMO

Diclofenac (DCF) is an environmentally persistent, nonsteroidal anti-inflammatory drug (NSAID) with thyroid disrupting properties. Electrochemical advanced oxidation processes (eAOPs) can efficiently remove NSAIDs from wastewater. However, eAOPs can generate transformation products (TPs) with unknown chemical and biological characteristics. In this study, DCF was electrochemically degraded using a boron-doped diamond anode. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the TPs of DCF and elucidate its potential degradation pathways. The biological impact of DCF and its TPs was evaluated using the Xenopus Eleutheroembryo Thyroid Assay, employing a transgenic amphibian model to assess thyroid axis activity. As DCF degradation progressed, in vivo thyroid activity transitioned from anti-thyroid in non-treated samples to pro-thyroid in intermediately treated samples, implying the emergence of thyroid-active TPs with distinct modes of action compared to DCF. Molecular docking analysis revealed that certain TPs bind to the thyroid receptor, potentially triggering thyroid hormone-like responses. Moreover, acute toxicity occurred in intermediately degraded samples, indicating the generation of TPs exhibiting higher toxicity than DCF. Both acute toxicity and thyroid effects were mitigated with a prolonged degradation time. This study highlights the importance of integrating in vivo bioassays in the environmental risk assessment of novel degradation processes.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Glândula Tireoide , Poluentes Químicos da Água , Animais , Diclofenaco/toxicidade , Diclofenaco/química , Diclofenaco/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Anti-Inflamatórios não Esteroides/química , Medição de Risco , Técnicas Eletroquímicas , Simulação de Acoplamento Molecular , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Xenopus laevis , Diamante/química , Oxirredução , Boro/toxicidade , Boro/química
2.
Environ Int ; 176: 107992, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244003

RESUMO

Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Etinilestradiol/análise , Etinilestradiol/química , Etinilestradiol/metabolismo , Cloreto de Sódio , Poluentes Químicos da Água/análise , Estrona , Águas Residuárias , Disruptores Endócrinos/análise
3.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35055213

RESUMO

Biochar from spent malt rootlets was employed as the template to synthesize hybrid biochar-ceria materials through a wet impregnation method. The materials were tested for the activation of persulfate (SPS) and subsequent degradation of sulfamethoxazole (SMX), a representative antibiotic, in various matrices. Different calcination temperatures in the range 300-500 °C were employed and the resulting materials were characterized by means of N2 adsorption and potentiometric mass titration as well as TGA, XRD, SEM, FTIR, DRS, and Raman spectroscopy. Calcination temperature affects the biochar content and the physicochemical properties of the hybrid materials, which were tested for the degradation of 500 µg L-1 SMX with SPS (in the range 200-500 mg L-1) in various matrices including ultrapure water (UPW), bottled water, wastewater, and UPW spiked with bicarbonate, chloride, or humic acid. Materials calcined at 300-350 °C, with a surface area of ca. 120 m2 g-1, were the most active, yielding ca. 65% SMX degradation after 120 min of reaction in UPW; materials calcined at higher temperatures as well as bare biochar were less active. Degradation decreased with increasing matrix complexity due to the interactions amongst the surface, the contaminant, and the oxidant. Experiments in the presence of scavengers (i.e., methanol, t-butanol, and sodium azide) revealed that sulfate and hydroxyl radicals as well as singlet oxygen were the main oxidative species.

4.
Ultrason Sonochem ; 67: 105139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32348950

RESUMO

The sonochemical degradation of trimethoprim (TMP), a widely used antibiotic, in various water matrices was investigated. The effect of several parameters, such as initial TMP concentration (0.5-3 mg/L), actual power density (20-60 W/L), initial solution pH (3-10), inorganic ions, humic acid and water matrix on degradation kinetics was examined. The pseudo-first order degradation rate of TMP was found to increase with increasing power density and decreasing pH, water complexity (ultrapure water > bottled water > secondary wastewater) and initial TMP concentration. TMP degradation is accompanied by the formation of several transformation products (TPs) as evidenced by LC-QToF-MS analysis. Nine such TPs were successfully identified and their time-trend profiles during degradation were followed. An in silico toxicity evaluation was performed showing that several TPs could potentially be more toxic than the parent compound towards Daphnia magna, Pimephales promelas and Pseudokirchneriella subcapitata.


Assuntos
Anti-Infecciosos Urinários/química , Sonicação , Trimetoprima/química , Poluentes Químicos da Água/química , Anti-Infecciosos Urinários/toxicidade , Trimetoprima/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Waste Manag ; 31(8): 1833-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21530220

RESUMO

The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.


Assuntos
Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Catálise , Cidades , Cobre , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Temperatura , Fatores de Tempo
6.
J Hazard Mater ; 133(1-3): 135-42, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16310939

RESUMO

The pre-treatment of olive mill effluents (OME) by means of coagulation-flocculation coupling various inorganic materials and organic poly-electrolytes was investigated. Tests were conducted with two different OME with chemical oxygen demand (COD) contents of 61.1 and 29.3 g/L, total suspended solids (TSS) of 36.7 and 52.7 g/L and total phenolic contents (TP) of 3.5 and 2.5 g/L, respectively. Inorganic materials such as lime, iron, magnesium and aluminum as well as four cationic and two anionic commercial poly-electrolytes were employed either alone or in various combinations and screened with respect to their efficiency in terms of TSS, TP and COD removal, the amount of sludge produced and the phytotoxicity of the resulting liquid to lettuce seeds. Coupling lime or ferrous sulphate (in the range of several g/L) with cationic poly-electrolytes (in the range of 200-300 mg/L) led to quantitative TSS removal, while COD and TP removal varied between about 10-40% and 30-80%, respectively, depending on the materials and the effluent in question; separation efficiency generally decreased with decreasing coagulant and/or flocculant concentration. To enhance organic matter degradation, iron-based coagulation was coupled with H(2)O(2), thus simulating a Fenton reaction and this increased COD reduction to about 60%. The original, untreated OME was strongly phytotoxic to lettuce seeds even after several dilutions with water; however, phytotoxicity decreased considerably following treatment with lime and cationic poly-electrolytes; this was attributed to the removal of phenols and other phytotoxic species from the liquid phase.


Assuntos
Indústria Alimentícia , Peróxido de Hidrogênio/química , Resíduos Industriais/efeitos adversos , Olea/química , Gerenciamento de Resíduos/métodos , Eletrólitos , Floculação , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Resíduos Industriais/economia , Ferro/química , Lactuca/efeitos dos fármacos , Oxirredução , Sementes/efeitos dos fármacos
7.
Environ Int ; 31(2): 297-304, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15661298

RESUMO

The pre-treatment of three different olive oil processing effluents by means of direct flocculation (i.e. without prior coagulation) was investigated. Four cationic and two anionic poly-electrolytes were tested and most of them were found capable of removing nearly completely total suspended solids (TSS) as well as reducing considerably the concentration of chemical (COD) and biochemical oxygen demand (BOD(5)) without altering solution pH. Flocculant dosage was crucial to achieve effective separation. For three cationic and one anionic poly-electrolytes, the minimum dosage required to initiate separation was about 2.5-3 g/L. The remaining two poly-electrolytes failed to cause separation even at dosages as high as 7 g/L. Lime and ferric chloride were also tested as reference coagulants and found quite effective in terms of TSS removal although the degree of COD reduction was generally lower than that with poly-electrolytes. However, lime treatment would require greater dosages and longer treatment times than that with poly-electrolytes and would also increase considerably solution pH. A preliminary cost analysis showed that lime treatment for complete solids removal was generally less costly than that with poly-electrolytes presumably due to its low market price. Nonetheless, cost-benefits may be defied by several drawbacks associated with the use of lime.


Assuntos
Óleos de Plantas , Eliminação de Resíduos Líquidos/métodos , Custos e Análise de Custo , Eletroquímica , Eletrólitos , Floculação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Azeite de Oliva , Tamanho da Partícula , Polímeros , Eliminação de Resíduos Líquidos/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA