Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
JMIR Res Protoc ; 13: e55452, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713508

RESUMO

BACKGROUND: Physical capacity and physical activity are important aspects of physical functioning and quality of life in people with a chronic disease such as Parkinson disease (PD) or chronic obstructive pulmonary disease (COPD). Both physical capacity and physical activity are currently measured in the clinic using standardized questionnaires and tests, such as the 6-minute walk test (6MWT) and the Timed Up and Go test (TUG). However, relying only on in-clinic tests is suboptimal since they offer limited information on how a person functions in daily life and how functioning fluctuates throughout the day. Wearable sensor technology may offer a solution that enables us to better understand true physical functioning in daily life. OBJECTIVE: We aim to study whether device-assisted versions of 6MWT and TUG, such that the tests can be performed independently at home using a smartwatch, is a valid and reliable way to measure the performance compared to a supervised, in-clinic test. METHODS: This is a decentralized, prospective, observational study including 100 people with PD and 100 with COPD. The inclusion criteria are broad: age ≥18 years, able to walk independently, and no co-occurrence of PD and COPD. Participants are followed for 15 weeks with 4 in-clinic visits, once every 5 weeks. Outcomes include several walking tests, cognitive tests, and disease-specific questionnaires accompanied by data collection using wearable devices (the Verily Study Watch and Modus StepWatch). Additionally, during the last 10 weeks of this study, participants will follow an aerobic exercise training program aiming to increase physical capacity, creating the opportunity to study the responsiveness of the remote 6MWT. RESULTS: In total, 89 people with PD and 65 people with COPD were included in this study. Data analysis will start in April 2024. CONCLUSIONS: The results of this study will provide information on the measurement properties of the device-assisted 6MWT and TUG in the clinic and at home. When reliable and valid, this can contribute to a better understanding of a person's physical capacity in real life, which makes it possible to personalize treatment options. TRIAL REGISTRATION: ClinicalTrials.gov NCT05756075; https://clinicaltrials.gov/study/NCT05756075. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55452.


Assuntos
Doença de Parkinson , Doença Pulmonar Obstrutiva Crônica , Dispositivos Eletrônicos Vestíveis , Humanos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/psicologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico , Estudos Prospectivos , Masculino , Idoso , Feminino , Teste de Caminhada/métodos , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Desempenho Físico Funcional , Qualidade de Vida
2.
Sci Rep ; 13(1): 3600, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918552

RESUMO

Continuous, objective monitoring of motor signs and symptoms may help improve tracking of disease progression and treatment response in Parkinson's disease (PD). This study assessed the analytical and clinical validity of multi-sensor smartwatch measurements in hospitalized and home-based settings (96 patients with PD; mean wear time 19 h/day) using a twice-daily virtual motor examination (VME) at times representing medication OFF/ON states. Digital measurement performance was better during inpatient clinical assessments for composite V-scores than single-sensor-derived features for bradykinesia (Spearman |r|= 0.63, reliability = 0.72), tremor (|r|= 0.41, reliability = 0.65), and overall motor features (|r|= 0.70, reliability = 0.67). Composite levodopa effect sizes during hospitalization were 0.51-1.44 for clinical assessments and 0.56-1.37 for VMEs. Reliability of digital measurements during home-based VMEs was 0.62-0.80 for scores derived from weekly averages and 0.24-0.66 for daily measurements. These results show that unsupervised digital measurements of motor features with wrist-worn sensors are sensitive to medication state and are reliable in naturalistic settings.Trial Registration: Japan Pharmaceutical Information Center Clinical Trials Information (JAPIC-CTI): JapicCTI-194825; Registered June 25, 2019.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Japão , Tecnologia
3.
Neuromodulation ; 19(7): 689-697, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27491661

RESUMO

OBJECTIVES: Deep brain stimulation (DBS), which uses an implantable device to modulate brain activity, is clinically superior to medical therapy for treating advanced Parkinson's disease (PD). We studied the cost-effectiveness of DBS in conjunction with medical therapy compared to best medical therapy (BMT) alone, using the latest clinical and cost data for the U.S. healthcare system. MATERIALS AND METHODS: We used a decision-analytic state-transition (Markov) model to project PD progression and associated costs for the two treatment strategies. We estimated the discounted incremental cost-effectiveness ratio (ICER) in U.S. dollars per quality-adjusted life-year (QALY) from the Medicare payer perspective, considering a ten-year horizon, and evaluated the robustness of our projections through extensive deterministic sensitivity analyses. RESULTS: Over ten years, DBS treatment led to discounted total costs of $130,510 compared to $91,026 for BMT and added 1.69 QALYs more than BMT, resulting in an ICER of $23,404 per QALY. This ICER was relatively insensitive to variations in input parameters, with neurostimulator replacement, costs for DBS implantation, and costs for treatment of disease-related falls having the greatest effects. Across all investigated scenarios, including a five-year horizon, ICERs remained under $50,000 per QALY. Longer follow-up periods and younger treatment age were associated with greater cost-effectiveness. CONCLUSIONS: DBS is a cost-effective treatment strategy for advanced PD in the U.S. healthcare system across a wide range of assumptions. DBS yields substantial improvements in health-related quality of life at a value profile that compares favorably to other well-accepted therapies.


Assuntos
Análise Custo-Benefício , Estimulação Encefálica Profunda/economia , Estimulação Encefálica Profunda/métodos , Custos de Cuidados de Saúde , Doença de Parkinson/terapia , Idoso , Antiparkinsonianos/economia , Antiparkinsonianos/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Doença de Parkinson/economia , Anos de Vida Ajustados por Qualidade de Vida , Sensibilidade e Especificidade , Resultado do Tratamento , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA