Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205656

RESUMO

BACKGROUND: Classifying diffuse large B-cell lymphoma (DLBCL) into cell-of-origin (COO) subtypes could allow for personalized cancer control. Evidence suggests that subtype-guided treatment may be beneficial in the activated B-cell (ABC) subtype of DLBCL, among patients under the age of 60. METHODS: We estimated the cost-effectiveness of age- and subtype-specific treatment guided by gene expression profiling (GEP). A probabilistic Markov model examined costs and quality-adjusted life-years gained (QALY) accrued to patients under GEP-classified COO treatment over a 10-year time horizon. The model was calibrated to evaluate the adoption of ibrutinib as a first line treatment among patients under 60 years with ABC subtype DLBCL. The primary data source for efficacy was derived from published estimates of the PHOENIX trial. These inputs were supplemented with patient-level, real-world data from BC Cancer, which provides comprehensive cancer services to the population of British Columbia. RESULTS: We found the cost-effectiveness of GEP-guided treatment vs. standard care was $77,806 per QALY (24.3% probability of cost-effectiveness at a willingness-to-pay (WTP) of $50,000/QALY; 53.7% probability at a WTP of $100,000/QALY) for first-line treatment. Cost-effectiveness was dependent on assumptions around decision-makers' WTP and the cost of the assay. CONCLUSIONS: We encourage further clinical trials to reduce uncertainty around the implementation of GEP-classified COO personalized treatment in this patient population.

2.
J Community Genet ; 13(5): 523-538, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34843087

RESUMO

Genomic research is driving discovery for future population benefit. Limited evidence exists on immediate patient and health system impacts of research participation. This study uses real-world data and quasi-experimental matching to examine early-stage cost and health impacts of research-based genomic sequencing. British Columbia's Personalized OncoGenomics (POG) single-arm program applies whole genome and transcriptome analysis (WGTA) to characterize genomic landscapes in advanced cancers. Our cohort includes POG patients enrolled between 2014 and 2015 and 1:1 genetic algorithm-matched usual care controls. We undertake a cost consequence analysis and estimate 1-year effects of WGTA on patient management, patient survival, and health system costs reported in 2015 Canadian dollars. WGTA costs are imputed and forecast using system of equations modeling. We use Kaplan-Meier survival analysis to explore survival differences and inverse probability of censoring weighted linear regression to estimate mean 1-year survival times and costs. Non-parametric bootstrapping simulates sampling distributions and enables scenario analysis, revealing drivers of incremental costs, survival, and net monetary benefit for assumed willingness to pay thresholds. We identified 230 POG patients and 230 matched controls for cohort inclusion. The mean period cost of research-funded WGTA was $26,211 (SD: $14,191). Sequencing costs declined rapidly, with WGTA forecasts hitting $13,741 in 2021. The incremental healthcare system effect (non-research expenditures) was $5203 (95% CI: 75, 10,424) compared to usual care. No overall survival differences were observed, but outcome heterogeneity was present. POG patients receiving WGTA-informed treatment experienced incremental survival gains of 2.49 months (95% CI: 1.32, 3.64). Future cost consequences became favorable as WGTA cost drivers declined and WGTA-informed treatment rates improved to 60%. Our study demonstrates the ability of real-world data to support evaluations of only-in-research health technologies. We identify situations where precision oncology research initiatives may produce survival benefit at a cost that is within healthcare systems' willingness to pay. This economic evidence informs the early-stage healthcare impacts of precision oncology research.

3.
Cancer Med ; 10(15): 5131-5140, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152087

RESUMO

BACKGROUND: Single-arm trials are common in precision oncology. Owing to the lack of randomized counterfactual, resultant data are not amenable to comparative outcomes analyses. Difference-in-difference (DID) methods present an opportunity to generate causal estimates of time-varying treatment outcomes. Using DID, our study estimates within-cohort effects of genomics-informed treatment versus standard care on clinical and cost outcomes. METHODS: We focus on adults with advanced cancers enrolled in the single-arm BC Cancer Personalized OncoGenomics program between 2012 and 2017. All individuals had a minimum of 1-year follow up. Logistic regression explored baseline differences across patients who received a genomics-informed treatment versus a standard care treatment after genomic sequencing. DID estimated the incremental effects of genomics-informed treatment on time to treatment discontinuation (TTD), time to next treatment (TTNT), and costs. TTD and TTNT correlate with improved response and survival. RESULTS: Our study cohort included 346 patients, of whom 140 (40%) received genomics-informed treatment after sequencing and 206 (60%) received standard care treatment. No significant differences in baseline characteristics were detected across treatment groups. DID estimated that the incremental effect of genomics-informed versus standard care treatment was 102 days (95% CI: 35, 167) on TTD, 91 days (95% CI: -9, 175) on TTNT, and CAD$91,098 (95% CI: $46,848, $176,598) on costs. Effects were most pronounced in gastrointestinal cancer patients. CONCLUSIONS: Genomics-informed treatment had a statistically significant effect on TTD compared to standard care treatment, but at increased treatment costs. Within-cohort evidence generated through this single-arm study informs the early-stage comparative effectiveness of precision oncology.


Assuntos
Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/economia , Análise de Sequência de DNA , Neoplasias da Mama , Custos e Análise de Custo , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/mortalidade , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/terapia , Estudo de Associação Genômica Ampla , Genômica/economia , Genômica/métodos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Neoplasias/mortalidade , Neoplasias/patologia , Medicina de Precisão/métodos , Estudos Retrospectivos , Resultado do Tratamento , Suspensão de Tratamento
4.
J Mol Diagn ; 20(2): 203-214, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29429887

RESUMO

Targeted next-generation sequencing panels are increasingly used to assess the value of gene mutations for clinical diagnostic purposes. For assay development, amplicon-based methods have been preferentially used on the basis of short preparation time and small DNA input amounts. However, capture sequencing has emerged as an alternative approach because of high testing accuracy. We compared capture hybridization and amplicon sequencing approaches using fresh-frozen and formalin-fixed, paraffin-embedded tumor samples from eight lymphoma patients. Next, we developed a targeted sequencing pipeline using a 32-gene panel for accurate detection of actionable mutations in formalin-fixed, paraffin-embedded tumor samples of the most common lymphocytic malignancies: chronic lymphocytic leukemia, diffuse large B-cell lymphoma, and follicular lymphoma. We show that hybrid capture is superior to amplicon sequencing by providing deep more uniform coverage and yielding higher sensitivity for variant calling. Sanger sequencing of 588 variants identified specificity limits of thresholds for mutation calling, and orthogonal validation on 66 cases indicated 93% concordance with whole-genome sequencing. The developed pipeline and assay identified at least one actionable mutation in 91% of tumors from 219 lymphoma patients and revealed subtype-specific mutation patterns and frequencies consistent with the literature. This pipeline is an accurate and sensitive method for identifying actionable gene mutations in routinely acquired biopsy materials, suggesting further assessment of capture-based assays in the context of personalized lymphoma management.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transtornos Linfoproliferativos/genética , Medicina de Precisão/métodos , Análise de Sequência de DNA/métodos , Biópsia , Estudos de Coortes , Estudos de Viabilidade , Formaldeído , Frequência do Gene , Genes Neoplásicos/genética , Humanos , Transtornos Linfoproliferativos/sangue , Transtornos Linfoproliferativos/patologia , Mutação , Inclusão em Parafina , Sensibilidade e Especificidade
5.
Genome Res ; 19(10): 1825-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19541910

RESUMO

We describe a new method, Tag-seq, which employs ultra high-throughput sequencing of 21 base pair cDNA tags for sensitive and cost-effective gene expression profiling. We compared Tag-seq data to LongSAGE data and observed improved representation of several classes of rare transcripts, including transcription factors, antisense transcripts, and intronic sequences, the latter possibly representing novel exons or genes. We observed increases in the diversity, abundance, and dynamic range of such rare transcripts and took advantage of the greater dynamic range of expression to identify, in cancers and normal libraries, altered expression ratios of alternative transcript isoforms. The strand-specific information of Tag-seq reads further allowed us to detect altered expression ratios of sense and antisense (S-AS) transcripts between cancer and normal libraries. S-AS transcripts were enriched in known cancer genes, while transcript isoforms were enriched in miRNA targeting sites. We found that transcript abundance had a stronger GC-bias in LongSAGE than Tag-seq, such that AT-rich tags were less abundant than GC-rich tags in LongSAGE. Tag-seq also performed better in gene discovery, identifying >98% of genes detected by LongSAGE and profiling a distinct subset of the transcriptome characterized by AT-rich genes, which was expressed at levels below those detectable by LongSAGE. Overall, Tag-seq is sensitive to rare transcripts, has less sequence composition bias relative to LongSAGE, and allows differential expression analysis for a greater range of transcripts, including transcripts encoding important regulatory molecules.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Sitios de Sequências Rotuladas , Algoritmos , Composição de Bases/fisiologia , Análise Custo-Benefício , Perfilação da Expressão Gênica/economia , Regulação Neoplásica da Expressão Gênica , Variação Genética/fisiologia , Biblioteca Genômica , Humanos , Modelos Biológicos , Isoformas de Proteínas/genética
6.
BMC Bioinformatics ; 8: 368, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17910767

RESUMO

BACKGROUND: Genomic deletions and duplications are important in the pathogenesis of diseases, such as cancer and mental retardation, and have recently been shown to occur frequently in unaffected individuals as polymorphisms. Affymetrix GeneChip whole genome sampling analysis (WGSA) combined with 100 K single nucleotide polymorphism (SNP) genotyping arrays is one of several microarray-based approaches that are now being used to detect such structural genomic changes. The popularity of this technology and its associated open source data format have resulted in the development of an increasing number of software packages for the analysis of copy number changes using these SNP arrays. RESULTS: We evaluated four publicly available software packages for high throughput copy number analysis using synthetic and empirical 100 K SNP array data sets, the latter obtained from 107 mental retardation (MR) patients and their unaffected parents and siblings. We evaluated the software with regards to overall suitability for high-throughput 100 K SNP array data analysis, as well as effectiveness of normalization, scaling with various reference sets and feature extraction, as well as true and false positive rates of genomic copy number variant (CNV) detection. CONCLUSION: We observed considerable variation among the numbers and types of candidate CNVs detected by different analysis approaches, and found that multiple programs were needed to find all real aberrations in our test set. The frequency of false positive deletions was substantial, but could be greatly reduced by using the SNP genotype information to confirm loss of heterozygosity.


Assuntos
Algoritmos , Dosagem de Genes/genética , Variação Genética/genética , Genômica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , Validação de Programas de Computador , Adulto , Criança , Genoma Humano/genética , Genômica/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
7.
BMC Genomics ; 6: 2, 2005 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-15631628

RESUMO

BACKGROUND: Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. RESULTS: Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). CONCLUSIONS: Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.


Assuntos
Biotecnologia/métodos , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Análise de Sequência de DNA/métodos , Automação , Biotecnologia/economia , Biotecnologia/instrumentação , Mapeamento Cromossômico , Primers do DNA , Perfilação da Expressão Gênica , Biblioteca Gênica , Modelos Estatísticos , Plasmídeos/metabolismo , Populus/metabolismo , Análise de Sequência de DNA/economia , Software
8.
Genome Res ; 13(6A): 1203-15, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12743019

RESUMO

An essential step in Serial Analysis of Gene Expression (SAGE) is tag mapping, which refers to the unambiguous determination of the gene represented by a SAGE tag. Current resources for tag mapping are incomplete, and thus do not allow assessment of the efficacy of SAGE in transcript identification. A method of tag mapping is described here and applied to the Drosophila melanogaster and Caenorhabditis elegans genomes, which permits detailed SAGE assessment and provides tag-mapping resources that were unavailable previously for these organisms. In our method, a conceptual transcriptome is constructed using genomic sequence and annotation by extending predicted coding regions to include UTRs on the basis of EST and cDNA alignments, UTR length distributions, and polyadenylation signals. Analysis of extracted tags suggests that, using the standard SAGE procedure, expression of 8% of D. melanogaster and 15% of C. elegans genes cannot be detected unambiguously by SAGE due to shared sequence or lack of NlaIII-anchoring enzyme sites. Both increasing tag length by 2-3 bp and using Sau3A instead of NlaIII as the anchoring enzyme increases potential for transcript detection. This work identifies and quantifies genes not amenable to SAGE analysis, in addition to providing tag-to-gene mappings for two model organisms.


Assuntos
Perfilação da Expressão Gênica/métodos , Transcrição Gênica/genética , Animais , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Drosophila melanogaster/genética , Genes de Helmintos/genética , Genes de Insetos/genética , Genoma
9.
Nucleic Acids Res ; 30(11): 2460-8, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12034834

RESUMO

We describe an efficient high-throughput method for accurate DNA sequencing of entire cDNA clones. Developed as part of our involvement in the Mammalian Gene Collection full-length cDNA sequencing initiative, the method has been used and refined in our laboratory since September 2000. Amenable to large scale projects, we have used the method to generate >7 Mb of accurate sequence from 3695 candidate full-length cDNAs. Sequencing is accomplished through the insertion of Mu transposon into cDNAs, followed by sequencing reactions primed with Mu-specific sequencing primers. Transposon insertion reactions are not performed with individual cDNAs but rather on pools of up to 96 clones. This pooling strategy reduces the number of transposon insertion sequencing libraries that would otherwise be required, reducing the costs and enhancing the efficiency of the transposon library construction procedure. Sequences generated using transposon-specific sequencing primers are assembled to yield the full-length cDNA sequence, with sequence editing and other sequence finishing activities performed as required to resolve sequence ambiguities. Although analysis of the many thousands (22 785) of sequenced Mu transposon insertion events revealed a weak sequence preference for Mu insertion, we observed insertion of the Mu transposon into 1015 of the possible 1024 5mer candidate insertion sites.


Assuntos
Bacteriófago mu/genética , Elementos de DNA Transponíveis/genética , DNA Complementar/genética , Mutagênese Insercional/genética , Recombinação Genética/genética , Análise de Sequência de DNA/métodos , Composição de Bases , Clonagem Molecular , Primers do DNA/genética , Biblioteca Gênica , Vetores Genéticos/genética , Método de Monte Carlo , Mapeamento Físico do Cromossomo/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA