Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895200

RESUMO

Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.

2.
Hum Genomics ; 18(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685113

RESUMO

BACKGROUND: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS: We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS: Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.


Assuntos
Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/diagnóstico , Genoma Humano/genética , Variação Genética/genética , Biologia Computacional/métodos , Fenótipo
3.
Res Sq ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577579

RESUMO

In the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6), the Genetics of Neurodevelopmental Disorders Lab in Padua proposed a new ID-challenge to give the opportunity of developing computational methods for predicting patient's phenotype and the causal variants. Eight research teams and 30 models had access to the phenotype details and real genetic data, based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age. In this study we evaluate the ability and accuracy of computational methods to predict comorbid phenotypes based on clinical features described in each patient and causal variants. Finally, we asked to develop a method to find new possible genetic causes for patients without a genetic diagnosis. As already done for the CAGI5, seven clinical features (ID, ASD, ataxia, epilepsy, microcephaly, macrocephaly, hypotonia), and variants (causative, putative pathogenic and contributing factors) were provided. Considering the overall clinical manifestation of our cohort, we give out the variant data and phenotypic traits of the 150 patients from CAGI5 ID-Challenge as training and validation for the prediction methods development.

4.
medRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577678

RESUMO

Background: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery. Families are consented for sharing of sequence and phenotype data with researchers, allowing development of a Critical Assessment of Genome Interpretation (CAGI) community challenge, placing variant prioritization models head-to-head in a real-life clinical diagnostic setting. Methods: Predictors were provided a dataset of phenotype terms and variant calls from GS of 175 RGP individuals (65 families), including 35 solved training set families, with causal variants specified, and 30 test set families (14 solved, 16 unsolved). The challenge tasked teams with identifying the causal variants in as many test set families as possible. Ranked variant predictions were submitted with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on rank position of true positive causal variants and maximum F-measure, based on precision and recall of causal variants across EPCR thresholds. Results: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performing teams recalled the causal variants in up to 13 of 14 solved families by prioritizing high quality variant calls that were rare, predicted deleterious, segregating correctly, and consistent with reported phenotype. In unsolved families, newly discovered diagnostic variants were returned to two families following confirmatory RNA sequencing, and two prioritized novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant, in an unsolved proband with phenotype overlap with asparagine synthetase deficiency. Conclusions: By objective assessment of variant predictions, we provide insights into current state-of-the-art algorithms and platforms for genome sequencing analysis for rare disease diagnosis and explore areas for future optimization. Identification of diagnostic variants in unsolved families promotes synergy between researchers with clinical and computational expertise as a means of advancing the field of clinical genome interpretation.

5.
Nucleic Acids Res ; 49(W1): W60-W66, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963861

RESUMO

The Bologna ENZyme Web Server (BENZ WS) annotates four-level Enzyme Commission numbers (EC numbers) as defined by the International Union of Biochemistry and Molecular Biology (IUBMB). BENZ WS filters a target sequence with a combined system of Hidden Markov Models, modelling protein sequences annotated with the same molecular function, and Pfams, carrying along conserved protein domains. BENZ returns, when successful, for any enzyme target sequence an associated four-level EC number. Our system can annotate both monofunctional and polyfunctional enzymes, and it can be a valuable resource for sequence functional annotation.


Assuntos
Enzimas/química , Anotação de Sequência Molecular/métodos , Análise de Sequência de Proteína/métodos , Software , Internet , Cadeias de Markov , Domínios Proteicos , Alinhamento de Sequência
6.
Hum Mutat ; 40(9): 1373-1391, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31322791

RESUMO

Whole-genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state-of-the-art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.


Assuntos
Biologia Computacional/métodos , Variação Genética , Doenças não Diagnosticadas/diagnóstico , Adolescente , Criança , Pré-Escolar , Simulação por Computador , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Fenótipo , Doenças não Diagnosticadas/genética , Sequenciamento Completo do Genoma
7.
Hum Mutat ; 40(9): 1495-1506, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184403

RESUMO

Thermodynamic stability is a fundamental property shared by all proteins. Changes in stability due to mutation are a widespread molecular mechanism in genetic diseases. Methods for the prediction of mutation-induced stability change have typically been developed and evaluated on incomplete and/or biased data sets. As part of the Critical Assessment of Genome Interpretation, we explored the utility of high-throughput variant stability profiling (VSP) assay data as an alternative for the assessment of computational methods and evaluated state-of-the-art predictors against over 7,000 nonsynonymous variants from two proteins. We found that predictions were modestly correlated with actual experimental values. Predictors fared better when evaluated as classifiers of extreme stability effects. While different methods emerging as top performers depending on the metric, it is nontrivial to draw conclusions on their adoption or improvement. Our analyses revealed that only 16% of all variants in VSP assays could be confidently defined as stability-affecting. Furthermore, it is unclear as to what extent VSP abundance scores were reasonable proxies for the stability-related quantities that participating methods were designed to predict. Overall, our observations underscore the need for clearly defined objectives when developing and using both computational and experimental methods in the context of measuring variant impact.


Assuntos
Biologia Computacional/métodos , Metiltransferases/química , Mutação , PTEN Fosfo-Hidrolase/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Estabilidade Proteica
8.
Hum Mutat ; 40(9): 1314-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140652

RESUMO

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors in European populations do not translate to individuals of African descent because of the differences in allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of Genome Interpretation, participants were asked to predict VTE status in exome data from African American subjects. Participants were provided with 103 unlabeled exomes from patients treated with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had been treated for. Given the lack of training data, many participants opted to use unsupervised machine learning methods, clustering the exomes by variation in genes known to be associated with VTE. The best performing method using only VTE related genes achieved an area under the ROC curve of 0.65. Here, we discuss the range of methods used in the prediction of VTE from sequence data and explore some of the difficulties of conducting a challenge with known confounders. In addition, we show that an existing genetic risk score for VTE that was developed in European subjects works well in African Americans.


Assuntos
Sequenciamento do Exoma/métodos , Tromboembolia Venosa/genética , Varfarina/administração & dosagem , Análise por Conglomerados , Biologia Computacional/métodos , Congressos como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Curva ROC , Aprendizado de Máquina não Supervisionado , Tromboembolia Venosa/tratamento farmacológico , Varfarina/uso terapêutico
9.
BMC Bioinformatics ; 6 Suppl 4: S12, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16351738

RESUMO

BACKGROUND: Structure prediction of membrane proteins is still a challenging computational problem. Hidden Markov models (HMM) have been successfully applied to the problem of predicting membrane protein topology. In a predictive task, the HMM is endowed with a decoding algorithm in order to assign the most probable state path, and in turn the labels, to an unknown sequence. The Viterbi and the posterior decoding algorithms are the most common. The former is very efficient when one path dominates, while the latter, even though does not guarantee to preserve the HMM grammar, is more effective when several concurring paths have similar probabilities. A third good alternative is 1-best, which was shown to perform equal or better than Viterbi. RESULTS: In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each state is computed and then the best posterior allowed path through the model is evaluated by a Viterbi algorithm. CONCLUSION: We show that PV decoding performs better than other algorithms when tested on the problem of the prediction of the topology of beta-barrel membrane proteins.


Assuntos
Membrana Celular/metabolismo , Biologia Computacional/métodos , Algoritmos , Teorema de Bayes , Gráficos por Computador , Bases de Dados de Proteínas , Internet , Cadeias de Markov , Proteínas de Membrana , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Probabilidade , Estrutura Secundária de Proteína , Análise de Sequência de DNA , Análise de Sequência de Proteína , Software
10.
Proteomics ; 4(6): 1665-71, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15174135

RESUMO

A hidden neural network-based method is used to predict the bonding state of cysteines starting from the residue sequence of the protein chain. The method scores as high as 89% and 86% per cysteine residue and per protein, respectively, and in this overcomes other predictors of the same category. We then explore the efficacy of our predictor in computing the disulfide content of the whole proteome of Escherichia coli (K12 and O157), Aeropirum pernix, Thermotoga maritima, and Homo sapiens. We find that the percentage of extracellular disulfide containing proteins is higher than that of intracellular one, and that the human proteome is by far the one with the highest content of sulfur-sulfur linkages in proteins.


Assuntos
Cisteína/química , Dissulfetos/química , Redes Neurais de Computação , Proteínas/química , Proteoma , Bases de Dados de Proteínas , Cadeias de Markov , Modelos Moleculares , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
11.
Bioinformatics ; 19 Suppl 1: i205-11, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12855459

RESUMO

MOTIVATION: All-alpha membrane proteins constitute a functionally relevant subset of the whole proteome. Their content ranges from about 10 to 30% of the cell proteins, based on sequence comparison and specific predictive methods. Due to the paucity of membrane proteins solved with atomic resolution, the training/testing sets of predictive methods for protein topography and topology routinely include very few well-solved structures mixed with a hundred proteins known with low resolution. Moreover, available predictors fail in predicting recently crystallised membrane proteins (Chen et al., 2002). Presently the number of well-solved membrane proteins comprises some 59 chains of low sequence homology. It is therefore possible to train/test predictors only with the set of proteins known with atomic resolution and evaluate more thoroughly the performance of different methods. RESULTS: We implement a cascade-neural network (NN), two different hidden Markov models (HMM), and their ensemble (ENSEMBLE) as a new method. We train and test in cross validation the three methods and ENSEMBLE on the 59 well resolved membrane proteins. ENSEMBLE scores with a per-protein accuracy of 90% for topography and 71% for topology, outperforming the best single method of 7 and 5 percentage points, respectively. When tested on a low resolution set of 151 proteins, with no homology with the 59 proteins, the per-protein accuracy of ENSEMBLE is 76% for topography and 68% for topology. Our results also indicate that the performance of ENSEMBLE is higher than that of the best predictors presently available on the Web.


Assuntos
Algoritmos , Inteligência Artificial , Proteínas de Membrana/química , Modelos Químicos , Modelos Moleculares , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Cadeias de Markov , Modelos Estatísticos , Dados de Sequência Molecular , Conformação Proteica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Homologia de Sequência de Aminoácidos
12.
Protein Sci ; 12(6): 1158-68, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12761386

RESUMO

We address the problem of clustering the whole protein content of genomes into three different categories-globular, all-alpha, and all-beta membrane proteins-with the aim of fishing new membrane proteins in the pool of nonannotated proteins (twilight zone). The focus is then mainly on outer membrane proteins. This is performed by using an integrated suite of programs (Hunter) specifically developed for predicting the occurrence of signal peptides in proteins of Gram-negative bacteria and the topography of all-alpha and all-beta membrane proteins. Hunter is tested on the well and partially annotated proteins (2160 and 760, respectively) of Escherichia coli K 12 scoring as high as 95.6% in the correct assignment of each chain to the category. Of the remaining 1253 nonannotated sequences, 1099 are predicted globular, 136 are all-alpha, and 18 are all-beta membrane proteins. In Escherichia coli 0157:H7 we filtered 1901 nonannotated proteins. Our analysis classifies 1564 globular chains, 327 inner membrane proteins, and 10 outer membrane proteins. With Hunter, new membrane proteins are added to the list of putative membrane proteins of Gram-negative bacteria. The content of outer membrane proteins per genome (nine are analyzed) ranges from 1.5% to 2.4%, and it is one order of magnitude lower than that of inner membrane proteins. The finding is particularly relevant when it is considered that this is the first large-scale analysis based on validated tools that can predict the content of outer membrane proteins in a genome and can allow cross-comparison of the same protein type between different species.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli O157/química , Escherichia coli/genética , Genoma Bacteriano , Proteínas da Membrana Bacteriana Externa/classificação , Escherichia coli O157/genética , Genes , Cadeias de Markov , Redes Neurais de Computação , Engenharia de Proteínas , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína
13.
Protein Sci ; 11(11): 2735-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12381855

RESUMO

The task of predicting the cysteine-bonding state in proteins starting from the residue chain is addressed by implementing a new hybrid system that combines a neural network and a hidden Markov model (hidden neural network). Training is performed using 4136 cysteine-containing segments extracted from 969 nonhomologous proteins of well-resolved three-dimensional structure. After a 20-fold cross-validation procedure, the efficiency of the prediction scores as high as 88% and 84%, when measured on cysteine and protein basis, respectively. These results outperform previously described methods for the same task.


Assuntos
Cisteína/química , Dissulfetos/química , Redes Neurais de Computação , Estrutura Terciária de Proteína , Proteínas/química , Bases de Dados de Proteínas , Cadeias de Markov , Modelos Teóricos
14.
Bioinformatics ; 18 Suppl 1: S46-53, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12169530

RESUMO

MOTIVATION: Membrane proteins are an abundant and functionally relevant subset of proteins that putatively include from about 15 up to 30% of the proteome of organisms fully sequenced. These estimates are mainly computed on the basis of sequence comparison and membrane protein prediction. It is therefore urgent to develop methods capable of selecting membrane proteins especially in the case of outer membrane proteins, barely taken into consideration when proteome wide analysis is performed. This will also help protein annotation when no homologous sequence is found in the database. Outer membrane proteins solved so far at atomic resolution interact with the external membrane of bacteria with a characteristic beta barrel structure comprising different even numbers of beta strands (beta barrel membrane proteins). In this they differ from the membrane proteins of the cytoplasmic membrane endowed with alpha helix bundles (all alpha membrane proteins) and need specialised predictors. RESULTS: We develop a HMM model, which can predict the topology of beta barrel membrane proteins using, as input, evolutionary information. The model is cyclic with 6 types of states: two for the beta strand transmembrane core, one for the beta strand cap on either side of the membrane, one for the inner loop, one for the outer loop and one for the globular domain state in the middle of each loop. The development of a specific input for HMM based on multiple sequence alignment is novel. The accuracy per residue of the model is 83% when a jack knife procedure is adopted. With a model optimisation method using a dynamic programming algorithm seven topological models out of the twelve proteins included in the testing set are also correctly predicted. When used as a discriminator, the model is rather selective. At a fixed probability value, it retains 84% of a non-redundant set comprising 145 sequences of well-annotated outer membrane proteins. Concomitantly, it correctly rejects 90% of a set of globular proteins including about 1200 chains with low sequence identity (<30%) and 90% of a set of all alpha membrane proteins, including 188 chains.


Assuntos
Algoritmos , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Modelos Químicos , Modelos Moleculares , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Cadeias de Markov , Modelos Estatísticos , Homologia de Sequência de Aminoácidos
15.
Protein Eng ; 15(12): 951-3, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12601133

RESUMO

A hybrid system (hidden neural network) based on a hidden Markov model (HMM) and neural networks (NN) was trained to predict the bonding states of cysteines in proteins starting from the residue chains. Training was performed using 4136 cysteine-containing segments extracted from 969 non-homologous proteins of well-resolved 3D structure and without chain-breaks. After a 20-fold cross-validation procedure, the efficiency of the prediction scores as high as 80% using neural networks based on evolutionary information. When the whole protein is taken into account by means of an HMM, a hybrid system is generated, whose emission probabilities are computed using the NN output (hidden neural networks). In this case, the predictor accuracy increases up to 88%. Further, when tested on a protein basis, the hybrid system can correctly predict 84% of the chains in the data set, with a gain of at least 27% over the NN predictor.


Assuntos
Cisteína/química , Dissulfetos/química , Modelos Moleculares , Redes Neurais de Computação , Proteínas/química , Cadeias de Markov , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA